Open Access
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 17005
Number of page(s) 7
Section Social Determinants and Health Behaviors
Published online 04 December 2020
  1. N. Sharma, M. H. Kolekar, K. Jha, Y. Kumar, EEG and Cognitive Biomarkers Based Mild Cognitive Impairment Diagnosis, IRBM, 40(2), 113-121 (2019) [CrossRef] [Google Scholar]
  2. F. R. Farina, D. D. Emek-Savaş, L. Rueda-Delgado, R. Boyle, H. Kiiski, G. Yener, R. Whelan, A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment, Neuromage, 21, 116795 (2020) [Google Scholar]
  3. E. V. Orekhova, M. Elam, V. Yu. Orekhov, Unraveling superimposed EEG rhythms with multi-dimensional decomposition, Journal of Neuroscience Methods, 195(1), 47-60 (2011) [CrossRef] [PubMed] [Google Scholar]
  4. F. Altındiş, B. Yılmaz, S. Borisenok, K. İçöz, Parameter investigation of topological data analysis for EEG signals, Biomedical Signal Processing and Control, 63, 102196 (2021) [CrossRef] [Google Scholar]
  5. K. Glomb, J. Rué Queralt, D. Pascucci, M. Defferrard, S. Tourbier, M. Carboni, M. Rubega, S. Vulliémoz, G. Plomp, P. Hagmann, Connectome spectral analysis to track EEG task dynamics on a subsecond scale, NeuroImage, 221, 117137 (2020) [Google Scholar]
  6. D. Jenson, D. Thornton, A. W. Harkrider, T. Saltuklaroglu, Influences of cognitive load on sensorimotor contributions to working memory: An EEG investigation of mu rhythm activity during speech discrimination, Neurobiology of Learning and Memory, 166, 107098 (2019) [Google Scholar]
  7. P. M. Keune, S. Hansen, T. Sauder, S. Jaruszowic, C. Kehm, J. Keune, E. Weber, M. Schönenberg, P. Oschmann, NeuroImage: Clinical, 22, 101716 (2019) [CrossRef] [Google Scholar]
  8. P. Marsella, A. Scorpecci, G. Cartocci, S. Giannantonio, A. G. Maglione, I. Venuti, A. Brizi, F. Babiloni, EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss, International Journal of Pediatric Otorhinolaryngology, 99, 1-7 (2017) [Google Scholar]
  9. V. Loganina, E. Kuimova, Methods of multi-dimensional statistical analysis for assessing the impact of applying technology of paint formulation: E3S Web Conf. 135, (2019) [Google Scholar]
  10. C. Oğüt, K. Başar, Assessment of impulsivity with self-report scales and behavioral tasks in symptomatic and remitted patients with major depression: European Neuropsychopharmacology, 27, S807 (2017) [Google Scholar]
  11. B. Jyothia, Y. MadhaveeLathab, P. G. KrishnaMohanc, V. S. K. Reddy, Integrated Multiple Features for Tumor Image Retrieval Using Classifier and Feedback Methods. Procedia Computer Science, 85, 141-148 (2016) [CrossRef] [Google Scholar]
  12. R. Neydorf, V. Krukhmalev, N. Kudinov, V. Pshikhopov, Methods of statistical processing of meteorological data for the tasks of trajectory planning of MAAT feeders: SAE Technical Papers, 7, 100869 (2013) DOI: 10.4271/2013-01-2266. [Google Scholar]
  13. R. Neydorf, A. Neydorf, D. Vučinić, “Cut-Glue” approximation method for strongly nonlinear and multidimensional object dependencies modeling. Advanced Structured Materials, 72, 155-173 (2018) DOI: 10.1007/978-3-319-59590-0_13 [CrossRef] [Google Scholar]
  14. V. V. Bonilla, C. G. Mosquera, M. D. Mideros, A. V. Litvin, Definition of the elbow movement parameters by means of the analysis of the biceps surface electromiographic signals: Proceedings - 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017, 2017, Pages 141-145 (2018) DOI: 10.1109/INCISCOS.2017.52 [Google Scholar]
  15. V. Parshina, E. Kuznetsova, Interaction between industry higher educational institutions and the customer of educational services: E3S Web Conf. 135, (2019) [Google Scholar]
  16. E. A. Kizhevatova, D. V. Bakuzova, V. P. Omelchenko, V. V. Efremov, Method of diagnosis of cognitive disorders of vascular origin in chronic cerebral ischemia. Pat. 2584651 Russian Federation: IPC A61B5/0476 (2006.01), no. 2015107404/14; declared. 03. 03.15;publ. 20. 05.16,Byul. 14, 3 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.