Open Access
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
Article Number 02012
Number of page(s) 9
Section General Environmental Modelling
Published online 25 November 2020
  1. S. Javed, F. Azeem, S. Hussain, I. Rasul, M.H. Siddique, M. Riaz, H. Nadeem, Bacterial lipases: A review on purification and characterization, Prog. Biophys. Mol. Biol. 132, 23-34 (2018) [CrossRef] [Google Scholar]
  2. D.A. Sánchez, G. M. Tonetto, M.L. Ferreira, Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions, Biotechnol. Bioeng. 115(1), 6-24 (2018) [CrossRef] [PubMed] [Google Scholar]
  3. N. Sarmah, D. Revathi, G. Sheelu, K. Yamuna Rani, S. Sridhar, V. Mehtab, C. Sumana, Recent advances on sources and industrial applications of lipases, Biotechnol. Prog. 34(1), 5-28 (2018) [CrossRef] [PubMed] [Google Scholar]
  4. S. Shamim, U. Liaqat, A. Rehman, Microbial lipases and their applications – A review, Abasyn Journal of Life Sciences (AJLS) 2(1), (2018) [Google Scholar]
  5. P. Chandra, R. Singh, P.K. Arora, Microbial lipases and their industrial applications: A comprehensive review, Microb. Cell Fact. 19(1), 1-42 (2020) [CrossRef] [PubMed] [Google Scholar]
  6. M. Suci, R. Arbianti, H. Hermansyah, Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil, in IOP Conference Series: Earth and Environmental Science (Vol. 105, No. 1, p. 012126). IOP Publishing Ltd. (2018, January) [Google Scholar]
  7. N.M. Maegala, S. Anupriya, A.H. Hazwan, Y.N. Suhaila, A. Hasdianty, Conversion of waste cooking oil to glycerol by halal microbial lipase, in IOP Conference Series: Earth and Environmental Science (Vol. 505, No. 1, p. 012056). IOP Publishing. (2020, July) [Google Scholar]
  8. D. Tischler, W.J. Van Berkel, M.W. Fraaije, Actinobacteria, a source of biocatalytic tools, Front. Microbiol. 10, 800 (2019) [CrossRef] [PubMed] [Google Scholar]
  9. D. Kim, K.Y. Choi, M. Yoo, G.J. Zylstra, E. Kim, Biotechnological potential of Rhodococcus biodegradative pathways, J. Microbiol. Biotechnol. 28(7), 1037–1051 (2018) [CrossRef] [Google Scholar]
  10. M.S. Kuyukina, I.B. Ivshina, Bioremediation of contaminated environments using Rhodococcus, in Biology of Rhodococcus (pp. 231–270). Springer, Cham. (2019) [CrossRef] [Google Scholar]
  11. M.N. Maniyam, N.S. Yaacob, H.H. Azman, N.A. Ab Ghaffar, H. Abdullah, Immobilized cells of Rhodococcus strain UCC 0004 as source of green biocatalyst for decolourization and biodegradation of methyl orange, Biocatal. Agric. Biotechnol. 16, 569-578 (2018) [CrossRef] [Google Scholar]
  12. M.N. Maniyam, A.L. Ibrahim, A.E. Cass, Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016, Environ. Technol. 41(1), 71-85 (2020) [CrossRef] [Google Scholar]
  13. M.N. Maniyam, M. Hari, N.S. Yaacob, Enhanced methylene blue decolourization by Rhodococcus strain UCC 0003 grown in banana peel agricultural waste through response surface methodology, Biocatal. Agric. Biotechnol. 23, 101486 (2020) [CrossRef] [Google Scholar]
  14. Y.N. Suhaila, A. Hasdianty, N.M. Maegala, A. Aqlima, A.H. Hazwan, M. Rosfarizan, A.B. Ariff, Biotransformation using resting cells of Rhodococcus UKMP-5M for phenol degradation, Biocatal. Agric. Biotechnol. 21, 101309 (2019) [CrossRef] [Google Scholar]
  15. M.N. Maniyam, F. Sjahrir, A. Latif Ibrahim, A.E. Cass, Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP− 5M, J. Environ. Sci. Health. Part A. 50(4), 357-364 (2015) [CrossRef] [Google Scholar]
  16. F. Sjahrir, M.N. Maniyam, A. Latif Ibrahim, A.E. Cass, Biotransformation of acrylonitrile using immobilized cells of Rhodococcus UKMP-5M as biocatalyst, Indian J. Fundam. Appl. Life Sci. 6(1), 58-67 (2016) [Google Scholar]
  17. A. Mehta, U. Bodh, R. Gupta, Isolation of a novel lipase producing fungal isolate Aspergillus fumigatus and production optimization of enzyme, Biocatal. Biotransfor. 36(6), 450-457 (2018) [CrossRef] [Google Scholar]
  18. S.E. Helal, H.M. Abdelhady, K.A. Abou-Taleb, M.G. Hassan, M.M. Amer, Evaluation of factors affecting the fungal lipase production using one factor at a time approach and response surface methodology, Egypt. J. Microbiol. 52(1), 1-16 (2017) [Google Scholar]
  19. F.A. Riyadi, M.Z. Alam, M.N. Salleh, M. N., H.M. Salleh, Optimization of thermostable organic solvent-tolerant lipase production by thermotolerant Rhizopus sp. using solid-state fermentation of palm kernel cake, 3 Biotech. 7(5), 300 (2017) [CrossRef] [Google Scholar]
  20. D.H. El-Ghonemy, M.S. El-Gamal, A. E. Tantawy, T.H. Ali, Extracellular alkaline lipase from a novel fungus Curvularia sp. DHE 5: Optimisation of physicochemical parameters, partial purification and characterisation, Food Technol. Biotechnol. 55(2), 206-217 (2017) [PubMed] [Google Scholar]
  21. B.K. Sethi, P.K. Nanda, S. Sahoo, Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10, Braz. J. Microbiol. 47(1), 143-149 (2016) [CrossRef] [Google Scholar]
  22. A.I. El-Batal, A.A Farrag, M.A. Elsayed, A.M. El-Khawaga, Effect of environmental and nutritional parameters on the extracellular lipase production by Aspergillus niger, Int. Lett. Nat. Sci. 60, 11 (2016) [Google Scholar]
  23. D.N. Putri, A. Khootama, M.S. Perdani, T.S. Utami, H. Hermansyah, Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste, Energy Rep. 6, 331-335 (2020) [CrossRef] [Google Scholar]
  24. A. Das, S. Bhattacharya, S. Shivakumar, S. Shakya, S. S.S Sogane, Coconut oil induced production of a surfactant‐compatible lipase from Aspergillus tamarii under submerged fermentation, J. Basic Microbiol. 57(2), 114-120 (2017) [CrossRef] [PubMed] [Google Scholar]
  25. W.M. de Azevedo, L.F.R de Oliveira, M.A. Alcântara, A.M.T.D.M. Cordeiro, K.S.F.D.S.C. Damasceno, C.F.D. Assis, F.C.D. Sousa Junior, Turning cacay butter and wheat bran into substrate for lipase production by Aspergillus terreus NRRL-255, Prep. Biochem. Biotech. 1-8 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.