Open Access
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
Article Number 04007
Number of page(s) 13
Section Digitalization and Sustainability
Published online 25 November 2020
  1. N.M. Schroeder, A. Panebianco, R.G. Musso, P. Carmanchahi, An experimental approach to evaluate the potential of drones in terrestrial mammal research: a gregarious ungulate as a study model, R Soc Open Sci. 7, 1 (2020) [CrossRef] [Google Scholar]
  2. W.Y. Lee, M. Park, C-U. Hyun, Detection of two Arctic birds in Greenland and an endangered bird in Korea using RGB and thermal cameras with an unmanned aerial vehicle (UAV), PLoS ONE. 14, 9 (2019) [Google Scholar]
  3. M. Lethbridge, M. Stead, C. Wells, Estimating kangaroo density by aerial survey: a comparison of thermal cameras with human observers, Wildl Res. 46, 8 (2019) [CrossRef] [Google Scholar]
  4. C. Patterson, W. Koski, P. Pace, B. McLuckie, and D.M. Bird, Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador, Unmanned Veh Syst. 4, 1 (2016) [Google Scholar]
  5. J.F. McEvoy, G.P. Hall, P.G. McDonald, Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition, PeerJ. 4, e1831 (2016) [CrossRef] [PubMed] [Google Scholar]
  6. J. Linchant, S. Lhoest, S. Quevauvillers, P. Lejeune, C. Vermeulen, J.S. Ngabinzeke, B.L. Belanganayi, W. Delvingt, P. Bouche, UAS imagery reveals new survey opportunities for counting hippos, PLoS ONE. 13, 11 (2018) [CrossRef] [Google Scholar]
  7. M.A. Ezat, C.J. Fritsch, C.T. Downs, Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa, Biol Conserv. 223, (2018) [Google Scholar]
  8. S.N. Longmore, R.P. Collins, S. Pfeifer, S.E. Fox, M. Mulero-Pázmány, F. Bezombes, A. Goodwin, M. De Juan Ovelar, J.H. Knapen, S.A. Wich, Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems, Int J Remote Sens. 38, 8-10 (2017) [CrossRef] [Google Scholar]
  9. G.W. Croon, D.R. Mccullough, C.E. OlsonJr, L.E. Queal, Infrared scanning techniques for big game censusing, J Wildl Manage. 32, 4 (1968) [CrossRef] [Google Scholar]
  10. B.S. Haroldson, E.P. Wiggers, J. Beringer, L.P. Hansen, J.B. McAninch, Evaluation of aerial thermal imaging for detecting white-tailed deer in a deciduous forest environment, Wildl Soc Bull. 31, 4 (2003) [Google Scholar]
  11. F. Potvin, L. Breton, Testing 2 aerial survey techniques on deer in fenced enclosures visual double-counts and thermal infrared sensing, Wildl Soc Bull. 33, 1 (2005) [CrossRef] [Google Scholar]
  12. J. Witczuk, S. Pagacz, A. Zmarz, M. Cypel, Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests preliminary results, Int J Remote Sens. 39, 15 (2017) [Google Scholar]
  13. C. Burke, M.F. Rashman, S.N. Longmore, O. McAree, P. Glover-Kapfer, M. Ancrenaz, S.A. Wich, Successful observation of orangutans in the wild with thermalequipped drones, J Unmanned Veh Syst. 7, 4 (2019) [Google Scholar]
  14. J.T. Beaver, R.W. Baldwin, M. Messinger, C.H. Newbolt, S.S. Ditchkoff, M.R. Silman, Evaluating the use of drones equipped with thermal sensors as an effective method for estimating wildlife, Wildl Soc Bull. 44, 2 (2020) [CrossRef] [Google Scholar]
  15. Z. Święcicki, Instrukcja Urządzania Lasu. Cz. 1, Instrukcja Sporządzania Projektu Planu Urządzenia Lasu Dla Nadleśnictw, Warszawa: Centrum Informacyjne Lasów Państwowych (2012) [Google Scholar]
  16. I. Jonckheere, S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, F. Baret, Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography, Agric for Meteorol. 121, 1-2 (2004) [CrossRef] [Google Scholar]
  17. A.H. Mustari, I. Zulkarnain, D. Rinaldi, Keanekaragaman jenis dan penyebaran mamalia di Kampus IPB Dramaga Bogor, Media Konservasi. 19, 2 (2014) [Google Scholar]
  18. [Himakova] Himpunan Mahasiswa Konservasi Sumber Daya Hutan dan Ekowisata, Kampus Institut Pertanian Bogor Sebagai Kampus Biodiversitas (2016) [Accessed on 15 September 2020] [Google Scholar]
  19. P. Christiansen, K.A. Steen, R.N. Jørgensen, H. Karstoft, Automated detection and recognition of wildlife using thermal cameras, Sensors. 14, 8 (2014) [CrossRef] [Google Scholar]
  20. L.F. Gonzalez, G.A. Montes, E. Puig, S. Johnson, K. Mengersen, K.J. Gaston, Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation, Sensors. 16, 1 (2016) [CrossRef] [Google Scholar]
  21. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521, 7553 (2015) [Google Scholar]
  22. A.C. Seymour, J. Dale, M. Hammill, P.N. Halpin, D.W. Johnston, Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery, Sci Rep. 7, 45127 (2017) [CrossRef] [PubMed] [Google Scholar]
  23. M.D. Wright, P. Goodman, T.C. Cameron, Exploring behavioural responses of shorebirds to impulsive noise, Wildfowl. 60 (2010) [Google Scholar]
  24. E. Vas, A. Lescroel, O. Duriez, G. Boguszewski, D. Gremillet, Approaching birds with drones: first experiments and ethical guidelines, Biol Lett. 11, 2 (2015) [Google Scholar]
  25. M. Mulero-Pázmány, R. Stolper, L.D. Van Essen, J.J. Negro, T. Sassen, Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa, PLoS ONE. 9, 1 (2014) [CrossRef] [PubMed] [Google Scholar]
  26. R. Kays, J. Sheppard, K. Mclean, C. Welch, C. Paunescu, V. Wang, G. Kravit, M. Crofoot, Hot monkey, cold reality: surveying rainforest canopy mammals using dronemounted thermal infrared sensors, Int J Remote Sens. 40, 2 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.