Open Access
Issue
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 01003
Number of page(s) 5
Section Industrial Catalysis and Chemical Substance R&D and Application
DOI https://doi.org/10.1051/e3sconf/202021301003
Published online 01 December 2020
  1. Zhang, X., He, Q.L., Gu, H.B. (2013) Flame-retardant electrical conductive nanopolymers aased on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl. Mater. Interfaces. 5, 3: 898-910. [CrossRef] [Google Scholar]
  2. Lin, C.T., Lee, H.T., Chen, J.K. (2015) Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels. Appl. Surf. Sci., 330:1-9. [CrossRef] [Google Scholar]
  3. Granjon, R., Fournier, M. (1982) Solid bisphenol F particulates. US.P. [Google Scholar]
  4. Okihama, M., Kunitake, Y. (1997) Production of bisphenol F. US.P. [Google Scholar]
  5. Morris, R.O., Mass, M. (1982) Process for making bis (hydroxy-phenyl) methanes. US.P. [Google Scholar]
  6. Morris, R.O., Wilbraham, M. (1083) Process for making basic hydroxyphenyl methanes. US.P. [Google Scholar]
  7. Jana, S.K., Okamoto, T., Kugita, T., Namba, S. (2005) Selective synthesis of bisphenol-F catalyzed by microporous H-beta zeolite. Appl. Catal. A: Gen., 288: 80-85. [CrossRef] [Google Scholar]
  8. Xie, M.Y., Li, R.F., Tian, L.L., Jia, X.N. (2014) Synthesis of Bisphenol F catalyzed by aluminumgrafted MCM-41 mesoporous. Chin. J. Appl. Chem., 31: 153-158. [Google Scholar]
  9. Jana, S.K., Okamoto, T., Kugita, T., Namba, S. (2004) Aluminum-grafted MCM-41 molecular sieve: an active catalyst for bisphenol F synthesis process. Appl. Catal. A: Gen., 266: 245-250 [CrossRef] [Google Scholar]
  10. Jana, S.K., Okamoto, T., Kugita, T., Namba, S. (2003) Bisphenol-F synthesis over mesoporous aluminosilicate MCM-41 molecular sieves. Catal. Lett., 90: 3-4. [CrossRef] [Google Scholar]
  11. Tan, Y., Li Y.F., Wei, Y.F., Wu, Z.M., et. al. (2015) The hydroxyalkylation of phenol with formaldehyde over mesoporous M(Al, Zr, Al-Zr)-SBA-15 catalysts. Catal. Commun., 67:21-25. [CrossRef] [Google Scholar]
  12. Chen, G., Wang, Q., Li, Y.E., Xiao, D., Liu, Y. (2014) Ion. Exchange. Adsorpt., 30: 397-405. [Google Scholar]
  13. Garade, A.C., Kshirsagar, V.S., Rode, C.V. (2009) Selective hydroxyalkylation of phenol to bisphenol-F over dodecatungstophosphoric acid (DTP) impregnated on fumed silica. Appl. Catal. A: Gen., 354: 176-182. [CrossRef] [Google Scholar]
  14. Garade, A.C., Kshirsagar, V.S., Mane, R.B., Ghalwadkar, A.A., Joshi, U. D., Rode, C.V. (2010). Acidity tuning of montmorillonite K10 by impregnation with dodecatungstophosphoric acid and hydroxyalkylation of phenol. Appl. Clay. Sci., 48 :164-170. [CrossRef] [Google Scholar]
  15. Liu, R., Niu, X., Xia, X., Zeng, Z., Zhang, G., Lu. Y. (2015) Green synthesis of bisphenol-F over 12phosphotungstic acid supported on acid-activated palygorskite. RSC Adv., 5: 62394. [CrossRef] [Google Scholar]
  16. Balakrishnan, B., Kumar, D.S., Yoshida, Y., Jayakrishnan, A. (2005) Jayakrishnan, Chemical modification of poly (vinylchloride) resin using poly(ethyleneglycol) to improve blood compatibility. Biomaterials. 26: 3495–3502. [CrossRef] [PubMed] [Google Scholar]
  17. Samarasimhareddy, M., Prabhu, G., Vishwanatha, T., Sureshbabu, V. (2013) Pvc-supported palladium nanoparticles: an efficient catalyst for suzuki crosscoupling reactions at room temperature. Synthesis, 45: 1201-1206. [CrossRef] [Google Scholar]
  18. Zhang, L., Xue, M., Cui, Y. (2010) Catalytic Performance of PVC-Triethylene-Tetra mine Supported Palladium Complex for Heck Reaction. J. Appl. Polym. Sci., 115: 2523-2527. [CrossRef] [Google Scholar]
  19. Cui, Y., Zhang, L. (2005) Polyvinyl chloride– polyethylene–polyamine supported palladium complexes as high efficient and recyclable catalysts for Heck reaction. J. Mol. Catal. A: Chem, 237: 120–125. [CrossRef] [Google Scholar]
  20. Fu, R.Q., Woo, J.J., Seo, S.J., Lee, J.S., Moon, S.H. (2008) Sulfonated polystyrene/polyvinyl chloride composite membranes for pemfc applications. J. Membr. Sci., 309 :156–164. [CrossRef] [Google Scholar]
  21. Allan, J.T.S., Prest, L.E., Easton, E.B. (2015) The sulfonation of polyvinyl chloride: Synthesis and characterization for proton conducting membrane applications. J. Membr. Sci., 489:175-182. [CrossRef] [Google Scholar]
  22. Singh, A., Rawat, M.S.M., Pande, C.S. (2010) Chemical modification and characterization of poly(vinyl chloride) by crosslinking of multifunctional amines. J. Appl. Polym. Sci., 118: 876-880. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.