Open Access
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 02016
Number of page(s) 9
Section Energy Mining Research and Composite Material Performance Analysis
Published online 01 December 2020
  1. T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds, ” Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011. [CrossRef] [Google Scholar]
  2. K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, “Heusler, Weyl and Berry, ” Nat. Rev. Mater., vol. 3, no. 8, pp. 244–256, 2018. [CrossRef] [Google Scholar]
  3. T. Graf, S. S. P. Parkin, and C. Felser, “Heusler compounds A material class with exceptional properties, ” IEEE Trans. Magn., vol. 47, no. 2 PART 2, pp. 367–373, 2011. [CrossRef] [Google Scholar]
  4. M. S. Lee, F. P. Poudeu, and S. D. Mahanti, “Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, ” Phys. Rev. B Condens. Matter Mater. Phys., vol. 83, no. 8, 2011. [Google Scholar]
  5. P. Larson, S. D. Mahanti, S. Sportouch, and M. G. Kanatzidis, “Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials, ” Phys. Rev. B Condens. Matter Mater. Phys., vol. 59, no. 24, pp. 15660–15668, 1999. [CrossRef] [Google Scholar]
  6. D. Xiao et al., “Half-Heusler compounds as a new class of three-dimensional topological insulators, ” Phys. Rev. Lett., vol. 105, no. 9, pp. 25–28, 2010. [Google Scholar]
  7. P. Skomski Ralph & Komesu Takashi & Borca Camelia & Jeong Hae & Dowben, “Layer-resolved spin polarization in Sb overlayers on NiMnSb. Journal of Applied Physics.” 2001. [Google Scholar]
  8. I. Galanakis, K. Özdoğan, E. Şaşioğlu, and B. Aktaş, “Ab initio design of half-metallic fully compensated ferrimagnets: The case of Cr2MnZ (Z=P, As, Sb, and Bi), ” Phys. Rev. B Condens. Matter Mater. Phys., vol. 75, no. 17, pp. 4–7, 2007. [Google Scholar]
  9. S. Guha, S. Kumar, S. Datta, M. K. Manglam, and M. Kar, “Metal to semimetal transition and magnetic critical behavior at room temperature in the full Heusler alloy Fe2MnSi, ” J. Phys. D. Appl. Phys., vol. 52, no. 50, p. 505002, 2019. [CrossRef] [Google Scholar]
  10. S. Öğüt and K. M. Rabe, “Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti, Zr, Hf): A first-principles study, ” Phys. Rev. B, vol. 51, no. 16, pp. 10443–10453, 1995. [CrossRef] [Google Scholar]
  11. G. H. Fecher, H. C. Kandpal, S. Wurmehl, C. Felser, and G. Schönhense, “Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds, ” J. Appl. Phys., vol. 99, no. 8, pp. 2–4, 2006. [CrossRef] [Google Scholar]
  12. D. P. Oxley, R. S. Tebble, C. T. Slack, and K. C. Williams, “An anti-ferromagnetic heusler alloy, Cu2MnSb, ” Nature, vol. 194, no. 4827. p. 465, 1962. [CrossRef] [Google Scholar]
  13. R. Marrazza, D. Rossi and R. Ferro, “CaIn2-type and MgAgAs-type RESbPd compounds (RE=rare earth element), ” Less Common Met., vol. 75, no. 2, p. 25, 1980. [CrossRef] [Google Scholar]
  14. S. K. Malik, A. M. Umarji, and G. K. Shenoy, “Magnetic and Mössbauer studies on rare -earth-containing Heusler alloys Pd2RSn (R=Tb--Yb), ” Phys. Rev. B, vol. 31, no. 11, pp. 6971–6975, 1985. [CrossRef] [Google Scholar]
  15. G. Andre, F. Bouree, A. Oles, W. Sikora, S. Baran, and A. Szytuła, “Magnetic structures of HoBdSb compound, ” Solid State Commun., vol. 104, no. 9, pp. 531–534, 1997. [CrossRef] [Google Scholar]
  16. D. Kaczorowski, K. Gofryk, T. Plackowski, A. LeitheJasper, and Y. Grin, “Unusual features of erbium-based Heusler phases, ” J. Magn. Magn. Mater., vol. 290–291, pp. 573–579, 2005. [CrossRef] [Google Scholar]
  17. S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, “Realization of spin gapless semiconductors: The Heusler compound Mn2CoAl, ” Phys. Rev. Lett., vol. 110, no. 10, pp. 2–6, 2013. [CrossRef] [PubMed] [Google Scholar]
  18. M. V Berry, “Quantal Phase Factors Accompanying Adiabatic Changes, ” Proc. R. Soc. Lond. A. Math. Phys. Sci., vol. 392, no. 1802, pp. 45–57, May 1984, [Online]. Available: [Google Scholar]
  19. S. Nie et al., “Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6, ” Phys. Rev. Lett., vol. 124, no. 7, pp. 76403, 2020. [CrossRef] [Google Scholar]
  20. Yao Shun-Yu Deng Ke Zhou Shu-Yun†, “A brief introduction to type-II Weyl semimetals, ” Physics (College. Park. Md)., vol. 45, no. 10, pp. 635–639, 2016. [Google Scholar]
  21. A. A. Soluyanov et al., “Type-II Weyl semimetals, ” Nature, vol. 527, no. 7579, pp. 495–498, 2015. [CrossRef] [PubMed] [Google Scholar]
  22. B. Yan and C. Felser, “Topological Materials: Weyl Semimetals, ” Annu. Rev. Condens. Matter Phys., vol. 8, no. 1, pp. 337–354, 2017. [CrossRef] [Google Scholar]
  23. L. Meng, J. Wu, J. Zhong, and R. A. Römer, “A type of robust superlattice type-I Weyl semimetal with four Weyl nodes, ” Nanoscale, vol. 11, no. 39, pp. 18358–18366, 2019. [CrossRef] [PubMed] [Google Scholar]
  24. S. Y. Xu et al., “Discovery of Lorentz-violating type II Weyl fermions in LaAlGe, ” Sci. Adv., vol. 3, no. 6, pp. 1–10, 2017. [Google Scholar]
  25. G. Chang et al., “Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn), ” Sci. Rep., vol. 6, no. November, pp. 1–9, 2016. [CrossRef] [PubMed] [Google Scholar]
  26. Y. W. Wei, C. K. Li, J. Qi, and J. Feng, “Magnetoconductivity of type-II Weyl semimetals, ” Phys. Rev. B, vol. 97, no. 20, pp. 1–9, 2018. [Google Scholar]
  27. J. S. Bell and R. Jackiw, “A PCAC puzzle: π0→γγ in the σmodel, ” Nuovo Cim. A, vol. 60, no. 1, pp. 47–61, 1969. [CrossRef] [Google Scholar]
  28. P. Hosur and X. Qi, “Recent developments in transport phenomena in Weyl semimetals, ” Comptes Rendus Phys., vol. 14, no. 9, pp. 857–870, 2013. [CrossRef] [Google Scholar]
  29. A. Lau, K. Koepernik, J. van den Brink, and C. Ortix, “Generic Coexistence of Fermi Arcs and Dirac Cones on the Surface of Time-Reversal Invariant Weyl Semimetals, ” Phys. Rev. Lett., vol. 119, no. 7, p. 76801, 2017. [CrossRef] [Google Scholar]
  30. Z. H. Liu et al., “Giant topological Hall effect in tetragonal Heusler alloy Mn2PtSn, ” Scr. Mater., vol. 143, pp. 122–125, 2018. [CrossRef] [Google Scholar]
  31. C. Shekhar et al., “Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd), ” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 37, pp. 9140–9144, 2018. [CrossRef] [PubMed] [Google Scholar]
  32. A. A. Burkov, “Anomalous hall effect in weyl metals, ” Phys. Rev. Lett., vol. 113, no. 18, pp. 1–5, 2014. [Google Scholar]
  33. H. Hohl, A. P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, and E. Bucher, “Efficient dopants for ZrNiSnbased thermoelectric materials, ” J. Phys. Condens. Matter, vol. 11, no. 7, pp. 1697–1709, 1999. [CrossRef] [Google Scholar]
  34. Y. Xia, V. Ponnambalam, S. Bhattacharya, A. L. Pope, S. J. Poon, and T. M. Tritt, “Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity, ” J. Phys. Condens. Matter, vol. 13, no. 1, pp. 77–89, 2000. [CrossRef] [Google Scholar]
  35. S. R. Culp, S. J. Poon, N. Hickman, T. M. Tritt, and J. Blumm, “Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C, ” Appl. Phys. Lett., vol. 88, no. 4, pp. 1–3, 2006. [Google Scholar]
  36. S.-W. Kim, Y. Kimura, and Y. Mishima, “High temperature thermoelectric properties of TiNiSn-based half-Heusler compounds, ” Intermetallics, vol. 15, no. 3, pp. 349–356, 2007. [CrossRef] [Google Scholar]
  37. Q. Shen et al., “Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based halfHeusler compounds, ” Appl. Phys. Lett., vol. 79, no. 25, pp. 4165–4167, 2001. [CrossRef] [Google Scholar]
  38. K. Gałązka, S. Populoh, W. Xie, S. Yoon, G. Saucke, and J. Hulliger, “Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution, ” J. Appl. Phys., vol. 115, pp. 0–8, 2014. [Google Scholar]
  39. O. Appel, M. Schwall, D. Mogilyansky, M. Köhne, B. Balke, and Y. Gelbstein, “Effects of Microstructural Evolution on the Thermoelectric Properties of SparkPlasma-Sintered Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Compound, ” J. Electron. Mater., vol. 42, no. 7, pp. 1340–1345, 2013. [CrossRef] [Google Scholar]
  40. S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, “High figure of merit in (Ti, Zr, Hf)NiSn half-Heusler alloys, ” Scr. Mater., vol. 66, no. 12, pp. 1073–1076, 2012. [CrossRef] [Google Scholar]
  41. M. Schwall and B. Balke, “Phase separation as a key to a thermoelectric high efficiency, ” Phys. Chem. Chem. Phys., vol. 15, no. 6, pp. 1868–1872, 2013. [CrossRef] [PubMed] [Google Scholar]
  42. S. Sakurada and N. Shutoh, “Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds, ” Appl. Phys. Lett., vol. 86, no. 8, pp. 1–3, 2005. [CrossRef] [Google Scholar]
  43. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. Ren, “Enhancement in Thermoelectric Figure-Of-Merit of an NType Half-Heusler Compound by the Nanocomposite Approach, ” Adv. Energy Mater., vol. 1, pp. 643–647, 2011. [CrossRef] [Google Scholar]
  44. X. Yan et al., “Thermoelectric property study of nanostructured p-type half-heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2, ” Adv. Energy Mater., vol. 3, no. 9, pp. 1195–1200, 2013. [CrossRef] [Google Scholar]
  45. S. N. Guin et al., “Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa, ” NPG Asia Mater., vol. 11, no. 1, 2019. [Google Scholar]
  46. J. Noky, J. Gayles, C. Felser, and Y. Sun, “Strong anomalous Nernst effect in collinear magnetic Weyl semimetals without net magnetic moments, ” Phys. Rev. B, vol. 97, no. 22, pp. 1–5, 2018. [CrossRef] [Google Scholar]
  47. A. E. De Paepe et al., “Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2, ” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019. [Google Scholar]
  48. W. Contributors, “Magnetic skyrmion, ” Wikipedia, The Free Encyclopedia, 2020. [Google Scholar]
  49. I. Dzyaloshinsky, “A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics, ” J. Phys. Chem. Solids, vol. 4, no. 4, pp. 241–255, 1958. [CrossRef] [Google Scholar]
  50. S. Husain et al., “Observation of Skyrmions at Room Temperature in Co2FeAl Heusler Alloy Ultrathin Film Heterostructures, ” Sci. Rep., vol. 9, no. 1, p. 1085, 2019. [CrossRef] [PubMed] [Google Scholar]
  51. F. Wilczek, “Majorana returns, ” Nat. Phys., vol. 5, no. 9, pp. 614–618, 2009. [CrossRef] [Google Scholar]
  52. N. Read and D. Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, ” Phys. Rev. B, vol. 61, no. 15, pp. 10267–10297, 2000. [CrossRef] [Google Scholar]
  53. P. Hosur, X. Dai, Z. Fang, and X.-L. Qi, “Time-reversalinvariant topological superconductivity in doped Weyl semimetals, ” Phys. Rev. B, vol. 90, no. 4, p. 45130, 2014. [CrossRef] [Google Scholar]
  54. N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope, and J. Paglione, “Superconductivity in the topological semimetal YPtBi, ” vol. 220504, pp. 1–5, 2011. [Google Scholar]
  55. F. F. Tafti, T. Fujii, S. Ren, and D. Cotret, “Superconductivity in the noncentrosymmetric halfHeusler compound LuPtBi: A candidate for topological superconductivity, ” vol. 184504, pp. 1–5, 2013. [Google Scholar]
  56. S. M. A. Radmanesh et al., “Evidence for unconventional superconductivity in half-Heusler YPdBi and TbPdBi compounds revealed by London penetration depth measurements, ” Phys. Rev. B, vol. 98, no. 24, p. 241111, 2018. [CrossRef] [Google Scholar]
  57. P. Brydon, L. Wang, M. Weinert, and D. Agterberg, “Pairing of j = 3 / 2 Fermions in Half-Heusler Superconductors, ” Phys. Rev. Lett., vol. 116, 2016. [CrossRef] [Google Scholar]
  58. P. Guo, J. Zhang, H. Yang, Z. Liu, K. Liu, and Z. Lu, “LnPd2Sn (Ln=Sc, Y, Lu) class of Heusler alloys for topological superconductivity, ” pp. 1–5, 2018. [Google Scholar]
  59. O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, and P. Wisniewski, “Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi, ” Sci. Rep., vol. 6, no. January, pp. 1–9, 2016. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.