Open Access
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 03028
Number of page(s) 5
Section Environmental Chemical Research and Energy-saving Technology Application
Published online 01 December 2020
  1. Yelick, P.C. and P.T. Sharpe, Tooth Bioengineering and Regenerative Dentistry. J Dent Res, 2019. 98(11): p. 1173-1182. [CrossRef] [PubMed] [Google Scholar]
  2. Duailibi, M.T., et al., Bioengineered teeth from cultured rat tooth bud cells. J Dent Res, 2004. 83(7): p. 523-8. [CrossRef] [PubMed] [Google Scholar]
  3. Honda, M.J., et al., Histological and immunohistochemical studies of tissue engineered odontogenesis. Arch Histol Cytol, 2005. 68(2): p. 89-101. [CrossRef] [PubMed] [Google Scholar]
  4. Young, C.S., et al., Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res, 2002. 81(10): p. 695-700. [CrossRef] [PubMed] [Google Scholar]
  5. Farzin, A., et al., Scaffolds in Dental Tissue Engineering: A Review. Archives of Neuroscience, 2019. 7(1). [CrossRef] [Google Scholar]
  6. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13625-30. [CrossRef] [PubMed] [Google Scholar]
  7. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J Dent Res, 2002. 81(8): p. 531-5. [CrossRef] [PubMed] [Google Scholar]
  8. Ferro, F., R. Spelat, and C.S. Baheney, Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol, 2014. 1210: p. 91-115. [CrossRef] [PubMed] [Google Scholar]
  9. Zhang, W., et al., The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 2006. 27(33): p. 5658-68. [CrossRef] [PubMed] [Google Scholar]
  10. Peng, L., L. Ye, and X.D. Zhou, Mesenchymal stem cells and tooth engineering. Int J Oral Sci, 2009. 1(1): p. 6-12. [CrossRef] [PubMed] [Google Scholar]
  11. Yokoi, T., et al., Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res, 2007. 327(2): p. 301-11. [CrossRef] [Google Scholar]
  12. Kémoun, P., et al., Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res, 2007. 329(2): p. 283-94. [CrossRef] [Google Scholar]
  13. Völlner, F., et al., A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation, 2009. 77(5): p. 433-41. [CrossRef] [PubMed] [Google Scholar]
  14. Morsczeck, C., et al., In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int, 2005. 29(7): p. 567-75. [CrossRef] [PubMed] [Google Scholar]
  15. Sun, J., et al., tBHQ Suppresses Osteoclastic Resorption in Xenogeneic-Treated Dentin MatrixBased Scaffolds. Adv Healthc Mater, 2017. 6(18). [Google Scholar]
  16. Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5807-12. [CrossRef] [PubMed] [Google Scholar]
  17. Huang, G.T., S. Gronthos, and S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res, 2009. 88(9): p. 792-806. [CrossRef] [PubMed] [Google Scholar]
  18. Seo, B.M., et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004. 364 (9429): p. 149-55. [CrossRef] [PubMed] [Google Scholar]
  19. Gay, I.C., S. Chen, and M. MacDougall, Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res, 2007. 10(3): p. 149-60. [CrossRef] [PubMed] [Google Scholar]
  20. Nagata, M., et al., Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration. Tissue Eng Part A, 2017. 23(9-10): p. 367-377. [CrossRef] [PubMed] [Google Scholar]
  21. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. [CrossRef] [PubMed] [Google Scholar]
  22. Ben Jehuda, R., Y. Shemer, and O. Binah, Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9. Stem Cell Rev Rep, 2018. 14(3): p. 323-336. [CrossRef] [Google Scholar]
  23. Nigra, T.P., M. Friedland, and G.R. Martin, Controls of connective tissue synthesis: collagen metabolism. J Invest Dermatol, 1972. 59(1): p. 44-9. [CrossRef] [PubMed] [Google Scholar]
  24. Prescott, R.S., et al., In Vivo Generation of Dental Pulp-like Tissue by Using Dental Pulp Stem Cells, a Collagen Scaffold, and Dentin Matrix Protein 1 after Subcutaneous Transplantation in Mice. Journal of Endodontics, 2008. 34(4): p. 421-426. [CrossRef] [PubMed] [Google Scholar]
  25. Nocera, A.D., et al., Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed Microdevices, 2018. 20(2): p. 26. [CrossRef] [PubMed] [Google Scholar]
  26. Shivashankar, V.Y., et al., Platelet Rich Fibrin in the revitalization of tooth with necrotic pulp and open apex. J Conserv Dent, 2012. 15(4): p. 395-8. [CrossRef] [PubMed] [Google Scholar]
  27. Anitua, E., et al., Autologous fibrin scaffolds: When plateletand plasma-derived biomolecules meet fibrin. Biomaterials, 2019. 192: p. 440-460. [CrossRef] [PubMed] [Google Scholar]
  28. Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res, 2004. 94(8): p. 1124-32. [CrossRef] [PubMed] [Google Scholar]
  29. Yu, H.Y., D.D. Ma, and B.L. Wu, [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]. Nan Fang Yi Ke Da Xue Xue Bao, 2017. 37(5): p. 668-672. [PubMed] [Google Scholar]
  30. Yu, H., et al., Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. J Endod, 2019. 45(6): p. 706-715. [CrossRef] [Google Scholar]
  31. Jiang, B., et al., Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A, 2013. 19(1-2): p. 224-34. [CrossRef] [PubMed] [Google Scholar]
  32. Ornitz, D.M. and N. Itoh, Fibroblast growth factors. Genome Biol, 2001. 2(3): p. Reviews3005. [Google Scholar]
  33. Yun, Y.R., et al., Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng, 2010: p. 218142. [CrossRef] [PubMed] [Google Scholar]
  34. Tsutsumi, S., et al., Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun, 2001. 288(2): p. 413-9. [CrossRef] [Google Scholar]
  35. Kato, Y. and D. Gospodarowicz, Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor. J Cell Biol, 1985. 100(2): p. 477-85. [CrossRef] [PubMed] [Google Scholar]
  36. Amit, M., et al., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol, 2000. 227(2): p. 271-8. [CrossRef] [PubMed] [Google Scholar]
  37. Qian, J., et al., Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J, 2015. 48(7): p. 690-700. [CrossRef] [Google Scholar]
  38. Lee, T.H., et al., Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol, 2015. 93(4): p. 298-305. [CrossRef] [PubMed] [Google Scholar]
  39. Xu, M., et al., Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Biosci Rep, 2019. 39(12). [Google Scholar]
  40. Sahni, A., T. Odrljin, and C.W. Francis, Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem, 1998. 273(13): p. 7554-9. [CrossRef] [PubMed] [Google Scholar]
  41. <[1875855X Asian Biomedicine] Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stem cells.pdf>. [Google Scholar]
  42. Ostman, A. and C.H. Heldin, Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res, 2001. 80: p. 1-38. [CrossRef] [PubMed] [Google Scholar]
  43. Tahriri, M., et al., Growth factors for oral and maxillofacial regeneration applications, in Biomaterials for Oral and Dental Tissue Engineering. 2017. p. 205-219. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.