Open Access
E3S Web Conf.
Volume 214, 2020
2020 International Conference on Energy Big Data and Low-carbon Development Management (EBLDM 2020)
Article Number 03025
Number of page(s) 9
Section Digital Development and Environmental Management of Energy Supply Chain
Published online 07 December 2020
  1. Kacen JJ., Hess J.D., Walker D. “Spontaneous selection: The influence of product and retailing factors on consumer impulse purchases. ” Journal of retailing and consumer services, 2012, 19(6), pp. 578-588. [Google Scholar]
  2. Zhao Feng, Wang Z.e. “Research on The Application of Improved SLP and AHP Methods in Supermarket layout. ”Logistics Science and Technology, 2018(9), pp. 13-17. [Google Scholar]
  3. Liu Zhihai, Zhang Dandan. “Supermarket Layout Optimization Based on Improved SLP. ” Logistics engineering and management, 2017(3), pp. 117-120. [Google Scholar]
  4. FAYYAD U. “From Data Mining to Knowledge Discovery in Databases. ” AI Magazine, 1996, 17(3), pp. 37-54. [Google Scholar]
  5. HE X, MIN F., ZHU W. “Parametric Rough Sets with Application to Granular Association Rule Mining. ” Mathematical Problems in Engineering, 2013, 2013(2), pp. 1-13. [Google Scholar]
  6. Francisco Azuaje, Witten IH, Frank E. “ Data Mining: Practical Machine Learning Tools and Techniques 2nd edition. ” Biomedical Engineering Online, 2006, 5(1), pp. 51. [Google Scholar]
  7. Li Xiao, Chen Wenbin, Cheng min. “Supermarket Layout Design Algorithm Based on Shopping Data. ” Digital design, 2016, 10(5), pp. 36-40. [Google Scholar]
  8. Wang Tingting, Yang Qin. “Optimal Scheduling of Supermarket Cash Registers Based on Simulated Plant Growth Algorithm. ” Computer application, 2014, 34(5), pp. 1516-1520. [Google Scholar]
  9. Andrade EB.. “Behavioral Consequences of Affect: Combining Evaluative and Regulatory Mechanisms. ” Journal of consumer research, 2005, 32(3), pp. 355-362. [Google Scholar]
  10. Zhang Yunlai. “Research on Integration of Impulsive Purchase Influence Mechanism Based on Emotional Perspective. ” Journal of Harbin Business University (SOCIAL SCIENCE EDITION), 2009(04):, pp. 3-7. [Google Scholar]
  11. Jia Tongling. “Store Line and “Magnetic Point” Design. ” China Cooperation Times, 2014-06-06 (B03). [Google Scholar]
  12. Gu Guangsheng. ““Magnetic Point” Theory and Display Skills of Small and Medium-sized Supermarkets: A Case Study of Meizhou Pacific Supermarket. ” Commercial Research, 2007 (06):, pp. 144-147. [Google Scholar]
  13. Masao Ohta, Yoshiyuki Higuchi. “Study on the Design of Supermarket Store Layouts: The Principle of “Sales Magnet”. World Academy of Science, Engineering and Technology Vol: 7 2013-01-26. [Google Scholar]
  14. R. Agrawal, T. Imielinski, A. Swami. “Mining Association Rules between Sets of Items in Large Databases”. Y. L. Diao. Acm Sigmod Record, Washington DC, May 26-28, 1993, NewYork: ACM Press, 1003, pp. 207-216. [Google Scholar]
  15. Hui S. K, Fader, P.S. Bradlow. “Research note-The traveling salesman goes shopping: The systematic deviations of grocery paths from TSP optimality. ” Marketing Science. 2009, pp. 566-572. [Google Scholar]
  16. X. Wenjie, L. Senbiao, H. Lihong. ” Simulation model of supermarket queuing system. ” Chinese Control Conference (CCC). Hangzhou, 2015, pp. 8819-8823. [Google Scholar]
  17. C. Yanfei, Z. Yafeng. SWOT Analysis on the Supermarkets in China[A]. International Conference on Business Computing and Global Informatization[C]. Shanghai, 2012, pp. 206-209. [Google Scholar]
  18. Huang Xigeng. The Role of Magnetic Dots in The Display Design of Drugstores [N]. 21st Century Pharmacy. 2017-11-20 (B02). [Google Scholar]
  19. Yu Liqiong. “Exploring The Combination of Regional Shopping Mall Formats Based on Consumer Preferences”. Commercial Economy Research, 2018 (1): 47-49. [Google Scholar]
  20. Péter Boros, “Orsolya Fehér, Zoltán Lakner, e. l. Modeling supermarket re-layout from the owner’s perspective. ” Annals of Operations Research, 2015, 238(1), pp. 60-63. [Google Scholar]
  21. Xiong Ping. “Data Mining Algorithm and Clementine Practice. ” Beijing: Tsinghua University Press, 2011. [Google Scholar]
  22. Kacen J, Hess J.D., Walker D. “Spontaneous selection: The influence of product and retailing factors on consumer impulse purchases. ” Journal of retailing and consumer services, 2012, 19(6), pp. 578-588. [Google Scholar]
  23. Iris IM.. “In-store impact on impulse shoppers. ” Marketing, 2002, 34(2), pp. 357-364. [Google Scholar]
  24. Neha P. Mehta, Pawan K.Chugan.. “The Impact of Visual Merchandising on Impulse Buying Behavior of Consumer: A Case from Central Mall of Ahmedabad India. ” Social Science Electronic Publishing., 2011, 57 (3), pp. 599-610. [Google Scholar]
  25. Zhang Shenghua, Li Jiahui, Li N.a. “Application of Association Rule Analysis in the Commodity Layout of Supermarkets. ” SME Management and Science and Technology, 2019 (05), pp. 61-63. [Google Scholar]
  26. Mowrey CH., Parikh P.J., Gue K.R. “A Model to Optimize Rack Layout in a Retail Store. ” European Journal of Operational Research, 2018, 377(2), pp. 71-83. [Google Scholar]
  27. Volpe R, Cho C. “Market structure determinants of performance for independent supermarkets. ” Managerial and Decision Economics, 2019, 40(8), pp. 871-881. [Google Scholar]
  28. Bill Page, Giang Trinh, Svetlana Bogomolova. “Comparing two supermarket layouts: The effect of a middle aisle on basket size, spend, trip duration and endcap use. ” Journal of Retailing and Consumer Services, 2019, 47(1), pp. 49-56. [Google Scholar]
  29. Elif Ozgormus, Alice E.Smith.. “A data-driven approach to grocery store block layout. ” Computers & Industrial Engineering, 2020, 139(10), pp. 55-62. [Google Scholar]
  30. Jean-Paul Arnaout, Caline ElKhoury, Gamze Karayaz. “Solving the multiple level warehouse layout problem using ant colony optimization. ” Operational Research, 2020, 20(1), pp. 473-490. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.