Open Access
Issue
E3S Web Conf.
Volume 214, 2020
2020 International Conference on Energy Big Data and Low-carbon Development Management (EBLDM 2020)
Article Number 03045
Number of page(s) 5
Section Digital Development and Environmental Management of Energy Supply Chain
DOI https://doi.org/10.1051/e3sconf/202021403045
Published online 07 December 2020
  1. Riccardo Rialti, Lamberto Zollo, Alberto Ferraris, Ilan Alon, Big data analytics capabilities and performance: Evidence from a moderated multimediation model, Technological Forecasting and Social Change 149 (2019) 119781. [Google Scholar]
  2. Jiwat Ram, Changyu. Zhang, Andy Koronios, The Implications of Big Data Analytics on Business Intelligence: A Qualitative Study in China, Procedia Computer Science 87 (2019) 221-226. [Google Scholar]
  3. Nadine Côrte-Real, Tiago Oliveira, Pedro Ruivo, Assessing business value of Big Data Analytics in European firms, Journal of Business Research 70 (2017) 379-390. [Google Scholar]
  4. Endris K. M., Rohde P.D., Vidal M.E., Auer S. (2019) Ontario: Federated Query Processing Against a Semantic Data Lake. In: Hartmann S., Küng J., Chakravarthy S., Anderst-Kotsis G., Tjoa A., Khalil I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science, vol 11706. Springer, Cham. [Google Scholar]
  5. Yuanzhu Zhan, Kim Hua Tan, An analytic infrastructure for harvesting big data to enhance supply chain performance, European Journal of Operational Research, 281 (2020) 559-574. [Google Scholar]
  6. Paolo LoGiudice., Lorenzo Musarella, Giuseppe Sofo, Domenico Ursino, An approach to extracting complex knowledge patterns among concepts belonging to structured, semi-structured and unstructured sources in a data lake, Information Sciences, 478 (2019) 606-626. [Google Scholar]
  7. H. Fang, “Managing data lakes in big data era: What’s a data lake and why has it became popular in data management ecosystem, ” in 2015 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, IEEECYBER 2015, 2015, pp. 820-824. [Google Scholar]
  8. Dixon J. : Pentaho, Hadoop, andDataLakes. https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/. [Google Scholar]
  9. Tyagi P., Demirkan H. : Data lakes: the biggest big data challenges. Analytics 9(6), 56-63 (2016). [Google Scholar]
  10. Alserafi A., Abelló A., Romero O., Calders T. (2019) Keeping the Data Lake in Form: DS-kNN Datasets Categorization Using Proximity Mining. In: Schewe K.D., Singh N. (eds) Model and Data Engineering. MEDI 2019. Lecture Notes in Computer Science, vol 11815. Springer, Cham. [Google Scholar]
  11. Natalia Miloslavskaya, Alexander Tolstoy, Big Data, Fast Data and Data Lake Concepts, Procedia Computer Science. Sci. 88 (2016) 300-305. [Google Scholar]
  12. Marilex ReaLlave., Data lakes in business intelligence: reporting from the trenches, Procedia Computer Science, 138 (2018) 516-524. [Google Scholar]
  13. Mehmood, Hassan (University of Oulu, Finland); Gilman, Ekaterina; Cortes, Marta; Kostakos, Panos; Byrne, Andrew; Valta, Katerina; Tekes, Stavros; Riekki, Jukka Source: Proceedings - 2019 IEEE 35th International Conference on Data Engineering Workshops, ICDEW 2019, p 37-44, April 2019. [Google Scholar]
  14. Maccioni A., Torlone R. (2018) KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake. In: Krogstie J., Reijers H. (eds) Advanced Information Systems Engineering. CAiSE 2018. Lecture Notes in Computer Science, vol 10816. Springer, Cham. [Google Scholar]
  15. Wibowo M., Sulaiman S., Shamsuddin S.M. (2017) Machine Learning in Data Lake for Combining Data Silos. In: Tan Y., Takagi H., Shi Y. (eds) Data Mining and Big Data. DMBD 2017. Lecture Notes in Computer Science, vol 10387. Springer, Cham. [Google Scholar]
  16. M. Farid, A. Roatis, I.F. Ilyas, H. -F. Hoffmann, and X. Chu, “CLAMS: Bringing Quality to Data Lakes, ” Proceedings of the 2016 International Conference on Management of Data SIGMOD 16, 2016. [Google Scholar]
  17. Jian Liu, X.X. Zhang, Lei Zhang, Tree pattern matching in heterogeneous fuzzy XML databases, Knowledge-Based Systems, 122 (2017) 119-130. [Google Scholar]
  18. Ji Ma, Yuyu Yuan, Dimension reduction of image deep feature using PCA, Journal of Visual Communication and Image Representation, 63 (2019). [Google Scholar]
  19. Y. Yuan, G. Wang, L. Chen, B. Ning, Efficient pattern matching on bigun certain graphs, Inf. Sci. 339(2016)369-394. [Google Scholar]
  20. Xin Li, Rob Law, Network analysis of big data research in tourism, Tourism Management Perspectives, 33 (2020). [Google Scholar]
  21. Qiang Liu, Dezhi Kong, S. Joe Qin, Quan Xu, Map-Reduce Decentralized PCA for Big Data Monitoring and Diagnosis of Faults in High-Speed Train Bearings IFAC-Papers OnLine, 51 (2018) 144-149. [Google Scholar]
  22. Cheilane T. de Souza, Sarah A.R. Soares, Antonio F.S. Queiroz, Ana M.P. dos Santos, Sergio L.C. Ferreira, Determination and evaluation of the mineral composition of breadfruit (Artocarpus altilis) using multivariate analysis technique, Microchemical Journal, 128(2016) 84-88, . [Google Scholar]
  23. Nasrin Kalanat, Eynollah Khanjari, Extracting actionable knowledge from social networks with node attributes, Expert Systems with Applications: X, 3(2019)100013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.