Open Access
Issue
E3S Web of Conf.
Volume 216, 2020
Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020)
Article Number 01028
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202021601028
Published online 14 December 2020
  1. Voropai NI, Stennikov V.A. Integrated intelligent energy systems//Izvestiya RAN. Energy, 2014, No.1, pp. 64–73. (in Russian). [Google Scholar]
  2. Arnold M., Andersson G. Decomposed electricity and natural gas optimal power flow//16th Power System Computation Conference, Glasgow, Scottland, UK, July 26 – 30, 2008, 6 p. [Google Scholar]
  3. Geidl M., Koeppel G., Favre-Perrod P., Andersson G., e. a. Energy Hubs for the future: A powerfull approach for next-generation energy systems//IEEE Power and Energy Magazine, 2007, Vol. 5, No. 1, pp. 24 – 30. [CrossRef] [Google Scholar]
  4. Koeppel G., Andersson G. Reliability modeling of multi-carrier energy systems//Energy, 2009, Vol. 34, No. 3, pp. 235 – 244. [CrossRef] [Google Scholar]
  5. Chaudry M., Jenkins N., Strbac G. Multi-time period combined gas and electricity network optimization//Electric Power System Research, 2008, Vol. 78, No. 5, pp. 1265 – 1279. [CrossRef] [Google Scholar]
  6. Voropai N.I., Stennikov V.A., Barakhtenko E.A., e. a. A model for control of a steady-state of intelligent integrated energy system//Energy Systems Research, 2018, Vol. 1, No. 1, pp. 57 – 66. [Google Scholar]
  7. Geidl M. Optimal power flow of multiple energy carriers//IEEE Transactions on Power Systems, 2007, Vol. 22, No. 1, pp. 145 – 155. [CrossRef] [Google Scholar]
  8. Almassalkhi M., Hiskens I. Optimization framework for the analysis of large-scale networks of energy hubs//17th Power System Computation Conference, Stockholm, Sweden, August 22 – 26, 2011, 7 p. [Google Scholar]
  9. Geidl M., Andersson G. Optimal coupling of energy infrastructures//2007 IEEE Lausanne Power Tech, Fig. 5. Generalized block-diagram of an algorithm for constructing a simulation model of an integrated multi-energy system Lausanne, Switzerland, July 17 – 21, 2007, 6 p. [Google Scholar]
  10. Zhang X., Shahidehpour M., Alabdulwahab A., Abusorrah A. Optimal expansion planning of energy hub with multiple energy infrastructures//IEEE Transactions on Smart Grid, 2015, Vol. 6, No. 5, pp. 2302 – 2311. [Google Scholar]
  11. Geidl M. Integrated modeling and optimization of multi-carrier energy systems/PhD Dissertation. Swiss Federal Institute of Technology, Zurich, Switzerland, 2007, 125 p. [Google Scholar]
  12. Koeppel G.A. Reliability considerations of future energy systems: Multi-carrier systems and the effect of energy storage/PhD Dissertation. Swiss Federal Institute of Technology, Zurich, Switzerland, 2007, 139 p. [Google Scholar]
  13. Fu Shen, Ping Ju, Shahidehpour M., e. a. Singular perturbation for the dynamic modeling of integrated energy systems//IEEE Transactions on Power Systems, 2020, Vol. 35, No. 3, pp. 1718 – 1728. [CrossRef] [Google Scholar]
  14. Voropai N., Gerasimov D., Ukolova Ek., Suslov K., e. a. Simulation approach to integrated energy systems study based on the energy hub concept// 2019 IEEE Power Tech, Milan, Italy, June 23 – 27, 2019, 5 p. [Google Scholar]
  15. Voropai N.I., Gerasimov D.O., Serdyukova E.V., Suslov K.V. Designing a simulation model of integrated multi-carrier energy system using the energy hub concept//Methodological Problems of Large Energy Systems Reliability Study. Int. Conf. Proceedings. Kasan, Russia, September 21 – 25, 2020, Issue 2, pp. 333 – 342. (in Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.