Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 01007
Number of page(s) 6
Section Research on Energy Technology Application and Consumption Structure
DOI https://doi.org/10.1051/e3sconf/202021801007
Published online 11 December 2020
  1. Winiarek V, Bocquet M, Duhanyan N, et al. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations[J]. Atmospheric environment, 2014, 82:268-279. [CrossRef] [Google Scholar]
  2. Camelli, F., Lohner, R.. Assessing maximum possible damage for contaminant release[J]. Engineering Computations, 2004, 21: 748-760. [CrossRef] [Google Scholar]
  3. Chang, M.E., Hartley, D.E., Cardelino, C., Haas Laursen, D., Chang, W. L.. On using inverse methods for resolving emissions with large spatial inhomogeneities[J]. Journal of Geophysical Research, 1997, 102: 16023-16036. [CrossRef] [Google Scholar]
  4. Haas-Laursen, D.E., Hartley, D.E., Prinn, R.G.. Optimizing an inverse method to deduce time-varying emissions of trace gases[J]. Journal of Geophysical Research, 1996, 101:22823-22831. [CrossRef] [Google Scholar]
  5. Haupt, S.E.. A demonstration of coupled receptor/dispersion modeling with a genetic algorithm[J]. Atmospheric Environment, 2005, 39: 7181-7189. [CrossRef] [Google Scholar]
  6. Thomson, L.C., Hirst, B., Gibson, G., Gillespie, S., Jonathan, P., Skeldon, K.D., Padgett, M.J.. An improved algorithm for locating a gas source using inverse methods[J]. Atmospheric Environment, 2007, 41:1128-1134. [CrossRef] [Google Scholar]
  7. Bergin, M.S., Milford, J.B.. Application of Bayesian Monte Carlo analysis toa Lagrangian photochemical air quality model[J]. Atmospheric Environment, 2000, 34:781-792. [CrossRef] [Google Scholar]
  8. Uliasz, M.. Application of the Perturbation theory to the Sensitivity analysis of an air Pollution model[J]. Zeitschrift fur Meterologie, 1983, 33: 355-362. [Google Scholar]
  9. Uliasz, M., Pielke, R.A.. Application of the receptor oriented approach in mesoscale dispersion modeling[C]. In: van Dop, H., Steyn, D.G. (Eds.), Air Pollution Modeling and Its Application VIII. Plenum Press, New York, 1991: 399-407. [CrossRef] [Google Scholar]
  10. Haupt S.E., Young G.S.. Paradigms for source characterization[C].15th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, 88th Annual American Meteorological Society Conference, New Orleans, LA, 2008, January 21-25. [Google Scholar]
  11. Rao, K.S.. Source estimation methods for atmospheric dispersion[J]. Atmospheric Environment, 2007, 41: 6963-6973. [Google Scholar]
  12. Devaud C., Bushe W.K., Bellan J.. The modeling of the turbulent reaction rate under high-pressure conditions: A priori evaluation of the Conditional Source-term Estimation concept[J]. Combustion and Flame 2019 Vol.207:205-221. [CrossRef] [Google Scholar]
  13. Chow, F.K., Kosovic, B., Chan, S.. Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations[J]. Journal of Applied Meteorology and Climatology, 2007, 47, 1553-1572. [CrossRef] [Google Scholar]
  14. Keats, A., Yee, E., Lien, F.-S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007a., 41:465-479. [CrossRef] [Google Scholar]
  15. Robins, P., Rapley, V.P., Green, N.. Real-time sequential inference of static parameters with expensive likelihood calculations[J]. Journal of the Royal Statistical Society, 2009, 58: 641-662. [Google Scholar]
  16. Bourne, Joseph R., Pardyjak, Eric R., Leang, Kam K.. Coordinated Bayesian-Based Bioinspired Plume Source Term Estimation and Source Seeking for Mobile Robots[J]. IEEE Transactions on Robotics 2019 Vol.35 No. 4 P967-986. [CrossRef] [Google Scholar]
  17. Hourdin, F., Talagrand, O.. Eulerian backtracking of atmospheric tracers. I: adjoint derivation and parameterization of subgrid-scale transport[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132:567-583. [CrossRef] [Google Scholar]
  18. Marc Bocquet, Alban Farchi. On the consistency of the local ensemble square root Kalman filter perturbation update[J]. Tellus A: Dynamic Meteorology and Oceanography, 2019, 71(1):156-164. [Google Scholar]
  19. Melina-Maria Zempila, Ronald J. van der A, Alkiviadis Bais, et al. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece[J]. Atmospheric Chemistry and Physics, 2017, 17 (11 Pt.2): 7157-7174. [CrossRef] [Google Scholar]
  20. Melina Maria Zempila, Michael Taylor, Maria Elissavet Koukouli, et al. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece[J]. Science of the Total Environment, 2017, 590/591: 92-106. [CrossRef] [Google Scholar]
  21. Occhipinti, C., Aneja, V.P., Showers, W., Niyogi, D.. Back-trajectory analysis and source-receptor relationships: particulate matter and nitrogen isotopic compositionin rainwater[J]. Journal of Air and Waste Management Association, 2008, 58:1215-1222. [CrossRef] [Google Scholar]
  22. Stohl, A.. Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe[J]. Atmospheric Environment, 1996, 30:579-587. [CrossRef] [Google Scholar]
  23. Young, G.S., Limbacher J.A., Haupt S.E., Annunzio A.J.. Back Trajectories for Hazard Origin Estimation[C]. Seventh Conference on Artificial Intelligence and Its Applications to the Environmental Sciences at AMS Annual Meeting, Phoenix, AZ, 2009, January 11-15. [Google Scholar]
  24. Allen, C.T., Haupt, S.E., Young, G.S.. Source characterization with a receptor/dispersion model coupled with a genetic algorithm[J]. Journal of Applied Meteorology and Climatology, 2007, 46:273-287. [CrossRef] [Google Scholar]
  25. Andrew J. Annunzio, George S. Young, Sue Ellen Haupt.. Utilizing state estimation to determine the source location for a contaminant[J]. Atmospheric Environment, 2012, 46:580-589. [CrossRef] [Google Scholar]
  26. Andrew J. Annunzio, George S. Young, Sue Ellen Haupt.. A Multi-Entity Field Approximation to determine the source location of multiple atmospheric contaminant releases[J]. Atmospheric Environment, 2012, 62: 593-604. [CrossRef] [Google Scholar]
  27. Luna Marie Rodriguez. Uncertainty propagation within source term estimation[D]. The Pennsylvania State University, 2012. [Google Scholar]
  28. Stohl A, Seibert P, Arduini J, et al. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons[J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1597-1620. [CrossRef] [Google Scholar]
  29. Stohl A, Prata A J, Eckhardt S, et al. Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajokull eruption[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4333-4351. [CrossRef] [Google Scholar]
  30. Stohl A, Seibert P, Wotawa G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition[J]. Atmospheric Chemistry and Physics, 2012, 12(5):2313-2343. [CrossRef] [Google Scholar]
  31. Mahmoud Bady. Evaluation of Gaussian Plume Model against CFD Simulations through the Estimation of CO and NO Concentrations in an Urban Area[J]. American Journal of Environmental Sciences, 2017, 13(2):93-102. [CrossRef] [Google Scholar]
  32. Ilias Bougoudis, Konstantinos Demertzis, Lazaros Iliadis. HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens[C]. Neural Comput & Applic, 10 June 2015. [Google Scholar]
  33. Jan Kleine Deters, Rasa Zalakeviciute, Mario Gonzalez, and Yves Rybarczyk. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters[J]. Journal of Electrical and Computer Engineering, Volume 2017, Article ID 5106045, 14 pages. [Google Scholar]
  34. Julien Brajard, Alberto Carrassi, Marc Bocquet, Laurent Bertino. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model[J]. Combining Data Assimilation and Machine Learning, 24 Jul 2020, 1-18. [Google Scholar]
  35. Tsiouri V, Kovalets I, Andronopoulos S, et al. Development and first tests of a data assimilation algorithm in a Lagrangian puff atmospheric dispersion model[J]. International Journal of Environment and Pollution, 2011, 44(1-4):147-155. [CrossRef] [Google Scholar]
  36. Tsiouri V, Kovalets I, Andronopoulos S, et al. Emission rate estimation through data assimilation of gamma dose measurements in a lagrangian atmospheric dispersion model[J]. Radiation protection dosimetry, 2012, 148(1):34-44. [CrossRef] [PubMed] [Google Scholar]
  37. Saunier O, Mathieu A, Dither D, et al. An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11403-11421. [CrossRef] [Google Scholar]
  38. Sun S D, Fang S, Liu Y, et al. Coupled Source Term Estimation Using Both Forward and Backward Method for Nuclear Power Plant Accident[C]. 2016 24th International Conference on Nuclear Engineering, 2016. [Google Scholar]
  39. Sun S, Li H, Fang S. A forward-backward coupled source term estimation for nuclear power plant accident: A case study of loss of coolant accident scenario[J]. Annals of Nuclear Energy, 2017, 104:64-74. [CrossRef] [Google Scholar]
  40. Zhu Yanmin, Xu Ailin, sun Qiang. New progress of air quality prediction methods based on deep learning [J]. China environmental monitoring, 2020, 36 (3): 10-18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.