Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03046
Number of page(s) 5
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803046
Published online 11 December 2020
  1. Schoenfelder, S., Fraser, P.: Long-range enhancer– promoter contacts in gene expression control. Nature Reviews Genetics, 1 (2019) [PubMed] [Google Scholar]
  2. Shen, S., Madau, P., Aguirre, A., Guedes, J., Mayer, L., Wadsley J.: The origin of metals in the circumgalactic medium of massive galaxies at z= 3. The Astrophysical Journal 760(1), 50 (2012) [NASA ADS] [CrossRef] [Google Scholar]
  3. Ecker, J.R., Bickmore, W.A., Barroso, I., Pritchard, J.K., Gilad, Y., Segal E.: Genomics: Encode explained. Nature 489 (7414), 52 (2012) [CrossRef] [PubMed] [Google Scholar]
  4. Osterwalder, M., Barozzi, I., Tissi`eres, V., Fukuda Yuzawa, Y., Mannion, B.J., Afzal, S.Y., Lee, E.A., Zhu, Y., Plajzer-Frick, I., Pickle, C.S., et al.: Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554 (7691), 239 (2018) [CrossRef] [PubMed] [Google Scholar]
  5. Whalen, S., Truty, R.M., Pollard, K.S.: Enhancer– promoter interactions are encoded by complex genomic signatures on looping chromatin. Nature genetics 48(5), 488 (2016) [CrossRef] [PubMed] [Google Scholar]
  6. Singh, S., Yang, Y., Poczos, B., Ma J.: Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. bio Rxiv, 085241 (2016) [Google Scholar]
  7. He, B., Chen, C., Teng, L., Tan K.: Global view of enhancer–promoter interactome in human cells. Proceedings of the National Academy of Sciences 111(21), 2191–2199 (2014) [CrossRef] [Google Scholar]
  8. Yang, Y., Zhang, R., Singh, S., Ma J.: Exploiting sequence-based features for predicting enhancer– promoter interactions. Bioinformatics 33(14), 252–260 (2017) [CrossRef] [Google Scholar]
  9. Yang, Y., Zhang, R., Singh, S., Ma J.: Exploiting sequence-based features for predicting enhancer– promoter interactions. Bioinformatics 33(14), 252–260 (2017) [CrossRef] [Google Scholar]
  10. Cortes, C., Vapnik V.: Support-vector networks. Machine learning 20(3), 273–297 (1995) [Google Scholar]
  11. Freund, Y., Schapire, R., Abe N.: A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence 14(771-780), 1612 (1999) [Google Scholar]
  12. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu T.-Y.: Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017) [Google Scholar]
  13. Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J.W., Ding, B., Li, N., Zheng, L., Wang W.: Constructing 3d interaction maps from 1d epigenomes. Nature communications 7, 10812 (2016) [CrossRef] [PubMed] [Google Scholar]
  14. Zeng, W., Wu, M., Jiang R.: Prediction of enhancerpromoter interactions via natural language processing. BMC genomics 19(2), 84 (2018) [CrossRef] [PubMed] [Google Scholar]
  15. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu T.-Y.: Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.