Open Access
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03051
Number of page(s) 5
Section Environmental Chemistry and Environmental Pollution Analysis and Control
Published online 11 December 2020
  1. Adleman L M (1994). Molecular computation of solutions to combinatorial problems. Science, 266 (5187), 1021-1024. [CrossRef] [PubMed] [Google Scholar]
  2. Winfree E (1998). Algorithmic self-assembly of DNA [Degree]. California CA: California Institute of Technology. [Google Scholar]
  3. Haiyan Z., Xiaolong S (2019). DNA Tile calculation. Journal of guangzhou university 18 (2), 65-74. [Google Scholar]
  4. Fu T J. Seeman N C (1993). DNA double-crossover molecules. Biochemistry 32 (13), 3211-3220. [CrossRef] [PubMed] [Google Scholar]
  5. LaBean T H. Yan H. Kopatsch J. et al (2000). Constructionanalysisligationand self-assembly of DNA triple crossover com-plexes. Journal of the American Chemical Society 122 (9), 1848-1860. [CrossRef] [Google Scholar]
  6. Yan H. Park S H., Finkelstein G., et al (2003). DNA templated self assembly of protein arrays and highly conductive nanowires. Science, 301 (5641), 1882-1884. [CrossRef] [PubMed] [Google Scholar]
  7. Yin P., Hariadi R F., Sahu S., et al. (2008) Programming DNA tube circumferences. Science, 321 (5890), 824-826. [CrossRef] [Google Scholar]
  8. Liu W., Zhong H., Wang R., et al (2011). Crystalline two-dimensional dna-origami arrays. Angewandte Chemie International Edition, 50 (1), 264-267. [CrossRef] [Google Scholar]
  9. Winfree E. Liu F., Wenzler L A (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394 (6693), 539. [CrossRef] [PubMed] [Google Scholar]
  10. Sherman W B., Seeman N C (2004). A precisely controlled DNA biped walking device. Nano Letters, 4 (7), 1203-1207. [CrossRef] [Google Scholar]
  11. Aldaye F A., Sleiman H F (2007). 3 d discrete ’DNA assemblies Modular access to structurally switchable. Journal of the American Chemical Society, 552 (7683), 13376-13377. [CrossRef] [Google Scholar]
  12. Tikhomirov G., Petersen P., Qian L (2017). Fractal assembly of microshoe-scale DNA origami arrays with spatial patterns. Nature, 552 (7683), 67. [CrossRef] [PubMed] [Google Scholar]
  13. Hari k.k, Elisa Franco (2019). The Autonomous dynamic control of DNA nanostructure self assembly. Nature Chemistry, 11, 510-520. [CrossRef] [PubMed] [Google Scholar]
  14. Wanggen L., Yongsheng D (2007). Design and implementation of Queue data structure in DNA computer. Journal of computer science, 30 (6), 993-998. [Google Scholar]
  15. Zhu., et al (2008). Strand storage structure of binary tree in DNA computer. Computer application research, 25 (09), 2632-2636. [Google Scholar]
  16. Fut. Seeman (1993).n. DNA double-crossover molecules. Biochemistry, 32, 3211-3220. [CrossRef] [PubMed] [Google Scholar]
  17. Rothemund. et al (2004). The Design and characterization of nanotubes programmable DNA. Am. Chem. Soc, 12616344-16352. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.