Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03053
Number of page(s) 6
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803053
Published online 11 December 2020
  1. R.D. de Vries, S. Herfst, M Richard (2018). Avian influenza A virus pandemic preparedness and vaccine development. Vaccines (Basel) 6, 46. [CrossRef] [Google Scholar]
  2. E. Tognotti (2003). Scientific triumphalism and learning from facts: bacteriology and the “Spanish flu” challenge of 1918. Social History of Medicine 16, 97–110. [CrossRef] [Google Scholar]
  3. A.H. Reid, J.K. Taubenberger (2003). The origin of the 1918 pandemic influenza virus: a continuing enigma. Journal of General Virology 84, 2285–2292. [CrossRef] [Google Scholar]
  4. Y.P. Lin, M. Shaw, V. Gregory, K. Cameron, W. Lim, A. Klimov, K. Subbarao, Y. Guan, S. Krauss, K. Shortridge, R. Webster, N. Cox, A. Hay (2000). Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences of the United States of America 97, 9654–9658. [CrossRef] [PubMed] [Google Scholar]
  5. M. Hatta, P. Gao, P. Halfmann, Y. Kawaoka (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 1840–1842. [CrossRef] [Google Scholar]
  6. T. Noda, Y. Kawaoka (2010). Genetic and molecular characteristics of the (2009 H1N1 pandemic influenza A virus. Nippon Rinsho. Japanese Journal of Clinical Medicine 68, 1590-1593. [Google Scholar]
  7. G. Tsoucalas, M. Sgantzos (2016). The 2009 influenza A virus subtype H1N1 pandemic, a glance from Greece. Le Infezioni in Medicina 24, 259-264. [PubMed] [Google Scholar]
  8. G.W. Wood, J Banks, J.W. McCauley, D.J. Alexander (1994). Deduced amino acid sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Archives of Virology 134, 185–194. [CrossRef] [Google Scholar]
  9. A.S. Lipatov, S. Krauss, Y. Guan, M. Peiris, J.E. Rehg, D.R. Perez, R.G. Webster (2003). Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001. Journal of Virology 77, 3816–3823. [CrossRef] [PubMed] [Google Scholar]
  10. Y. Guan, J.S.M. Peiris, A.S. Lipatov, T.M. Ellis, K.C. Dyrting, S. Krauss, L.J. Zhang, R.G. Webster, K.F (2002). Shortridge. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proceedings of the National Academy of Sciences of the United States of America 99, 8950–8955. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Guan, M. Peiris, K.F. Kong, K.C. Dyrting, T.M. Ellis, T. Sit, L.J. Zhang, K.F. Shortridge (2002). H5N1 influenza viruses isolated from geese in Southeastern China: evidence for genetic reassortment and interspecies transmission to ducks. Virology 292, 16– 23. [CrossRef] [Google Scholar]
  12. C. Bender, H. Hall, J. Huang, A. Klimov, N. Cox, A. Hay, V. Gregory, K. Cameron, W. Lim, K. Subbarao (1999). Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998. Virology 254, 115–123. [CrossRef] [PubMed] [Google Scholar]
  13. L.V. Gubareva, D.V. Novikov, F.G. Hayden (2002). Assessment of hemagglutinin sequence heterogeneity during influenza virus transmission in families. Journal of Infectious Diseases 186, 1575–1581. [CrossRef] [Google Scholar]
  14. R.G. Webster, Y. Guan, M. Peiris, D. Walker, S. Krauss, N.N. Zhou, E.A. Govorkova, T.M. Ellis, K.C. Dyrting, T. Sit, D.R. Perez, K.F. Shortridge (2002). Characterization of H5N1 influenza viruses that continue to circulate in Geese in Southeastern China. Journal of Virology 76, 118–126. [CrossRef] [PubMed] [Google Scholar]
  15. M.W. Deem, H.Y. Lee (2003). Sequence space localization in the immune system response to vaccination and disease. Physical Review Letters 91, 068101–068104. [CrossRef] [PubMed] [Google Scholar]
  16. N.M. Ferguson, A.P (2003). Galvani, Bush RM. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433. [CrossRef] [PubMed] [Google Scholar]
  17. J, Lin, V. Andreasen, R. Casagrandi, S.A. Levin (2003). Traveling waves in a model of influenza A drift. Journal of Theoretical Biology 222, 437–445. [CrossRef] [PubMed] [Google Scholar]
  18. Y. Suzuki (2001). Host mediated variation and receptor binding specificity of influenza viruses. Advances in Experimental Medicine and Biology 491, 445–451. [CrossRef] [PubMed] [Google Scholar]
  19. M.R. Hilleman (2002). Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 20, 3068–3087. [CrossRef] [PubMed] [Google Scholar]
  20. M.C. Zambon (1999). Epidemiology and pathogenesis of influenza. Journal of Antimicrobial Chemotherapy 44 Suppl. B, 3–9. [CrossRef] [Google Scholar]
  21. E. Hoffmann, J. Stech, I. Leneva, S. Krauss, C. Scholtissek, P.S. Chin, M. Peiris, K.F. Shortridge, R.G. Webster (2000). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? Virology 74, 6309–6315. [CrossRef] [Google Scholar]
  22. P.S. Chin, E. Hoffmann, R. Webby, R.G. Webster, Y. Guan, M. Peiris, K.F. Shortridge (2002). Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry, Journal of Virology 76, 507–516. [CrossRef] [PubMed] [Google Scholar]
  23. G.K. Hirst (1942). Absorption of influenza haemagglutinins and virus by red blood cells. Journal of Experimental Medicine 76, 195–209. [CrossRef] [Google Scholar]
  24. C.U. Kim, X. Chen, D.B. Mendel (1999). Neuraminidase inhibitors as anti-influenza virus agents. Antiviral Chemistry and Chemotherapy 10, 141–54. [CrossRef] [Google Scholar]
  25. G. Wu, S. Yan 2008 Lecture Notes on Computational Mutation. Nova Science Publishers, New York. [Google Scholar]
  26. The National Center for Biotechnology Information. Influenza Virus Resources (2020). https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database. [Google Scholar]
  27. M.J.R. Healy (1979). Outliers in clinical chemistry quality control schemes. Clinical Chemistry 25 675–677. [CrossRef] [PubMed] [Google Scholar]
  28. S. Yan, G. Wu (2010). Mutation pattern in human adrenoleukodystrophy protein in terms of amino-acid pair predictability. J Biomed Sci Eng 3, 262–7 [CrossRef] [Google Scholar]
  29. S. Yan, G. Wu (2010). Creation and application of computational mutation. Journal of Guangxi Academy of Sciences 26, 130–139. [Google Scholar]
  30. S. Yan, G. Wu (2013). Small variations between species/subtypes attributed to reassortment evidenced from polymerase basic protein 1 with other seven proteins from influenza A virus. Transboundary and Emerging Diseases 60, 110–119. [CrossRef] [PubMed] [Google Scholar]
  31. Q. Yu, S. Yan, G (2013). Wu Mutation patterns of human proto-oncogene tyrosine-protein kinase receptor RET by means of amino-acid pair predictability. Life Science Journal 10, 1667–1672. [Google Scholar]
  32. S. Yan, G. Wu (2013). Possibility of crossspecies/subtype reassortments in influenza A viruses: An analysis on nonstructural protein variations. Virulence 4, 716–725. [CrossRef] [PubMed] [Google Scholar]
  33. S.Y. Long, S. Yan, G. Wu (2014). Mutation patterns in human cystic fibrosis transmembrane conductance regulator protein (in Chinese). Guangxi Sciences 21, 671–676. [Google Scholar]
  34. C.H. Zhang, W.S. Ye, S. Yan, G. Wu (2019). Mutation patterns in lysostaphin. Journal of Biomedical Science and Engineering 12, 322–332. [CrossRef] [Google Scholar]
  35. K. Subbarao, J. Katz (2000). Avian influenza viruses infecting humans. Cellular and Molecular Life Sciences 57, 1770–1784. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.