Open Access
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
Article Number 04047
Number of page(s) 14
Section Agriculture and Bioscience
Published online 23 December 2020
  1. Giorgi F and Lionello P 2008 Climate change projections for the Mediterranean region Glob Planet Change 63 90 DOI: 10.1016/j.gloplacha.2007.09.005 [Google Scholar]
  2. Fatemi S S, Rahimi M, Tarkesh M and Ravanbakhsh H 2018 Predicting the impacts of climate change on the distribution of Juniperus excelsa M. Bieb. in the central and eastern Alborz Mountains Iran. iForest 11 643 DOI: 10.3832/ifor2559-011 [CrossRef] [Google Scholar]
  3. Jena A V and Feteria A V 2015 Red book of the Republic of Crimea. Plants, algae, fungi (Simferopol: LLC IT «ARIAL») p 480 [Google Scholar]
  4. Sperlich D, Chang C T , Peñuelas J, Gracia C and Sabaté S 2015 Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest Tree Physiology 35 501 DOI: 10.1093/treephys/tpv017 [CrossRef] [PubMed] [Google Scholar]
  5. Kint V, Aertsen W, Fyllas N M , Trabucco A, Janssen E, Özkan K and Muys B 2014 Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey Ecological Modelling 286 53 [Google Scholar]
  6. Özkan K, Gulsoy S, Aerts R. and Muys B 2010 Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey J. Environ. Biol. 31 97 [PubMed] [Google Scholar]
  7. Jovellar L C, Fernández L, Mezquita M, Bolaños F and Escudero V 2013 Structural characterization and analysis of the regeneration of woodlands dominated by Juniperus oxycedrus L. in west-central Spain Plant Ecol 214 61 [Google Scholar]
  8. Willson C J, Manos P S and Jackson R B 2008 Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae) Am J B ot 95 299 [CrossRef] [PubMed] [Google Scholar]
  9. Mayoral C, Calama R, Sánchez-González M and Pardos M 2015 Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests New Forests 46 485 DOI: 10.1007/s11056-015-9471-y [Google Scholar]
  10. Cruz-García R, Balzano A, Čufar K, Scharnweber T, Smiljanić M and Wilmking M 2019 Combining Dendrometer Series and Xylogenesis Imagery—DevX, a Simple Visualization Tool to Explore Plant Secondary Growth Phenology Front. For. Glob. Change 2 60 DOI: 10.3389/ffgc.2019.00060 [CrossRef] [Google Scholar]
  11. Ilnitsky O A, Plugatar Yu V and Korsakova S P 2018 Methodology, instrument base and practice of phytomonitoring (Simferopol: IT “ARIAL”) [in Russian] p 236 [Google Scholar]
  12. Gülcü S, Gültekin H C, Çelik S, Eser Y and Gürlevik N 2010 The effects of different pot length and growing media on seedling quality of Crimean juniper (Juniperus excelsa Bieb.) African Journal of Biotechnology 9 (14) 2101 [Google Scholar]
  13. Gürlevik N, Deligöz A and Yıldız D 2014 Effects of irrigation and fertilization on the growth of juniper seedlings Der Einfluss von Bewässerung und Düngung auf das Wachstum von Wacholdersämlingen Austrian Journal of Forest Science 3 171 [Google Scholar]
  14. Karapatzak E, Varsamis G, Koutseri I, Takos I and Merou T 2019 The effect of pollen performance on low seed fertility in a Greek population of Juniperus excelsa J. For. Sci. 65 356 DOI: 10.17221/42/2019-JFS [Google Scholar]
  15. Öncel M, Vurdu H, Kaymakçı A, Özkan O E and Aydoğan H 2019 COATING PERFORMANCES OF CRIMEAN JUNIPER (Juniperus excelsa M. BIEB.) WOOD Cerne 25 (1) 36 DOI: 10.1590/01047760201825012599 [CrossRef] [Google Scholar]
  16. Drozdov S N and Kholoptseva E S 2013 Possibilities of using a multi-factor experiment in the study of ecological and physiological characteristics of plants Scientific notes of Petrozavodsk state University [Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta – in Russian] 2 (131) 11 [Google Scholar]
  17. Boogar A R, Salehi H, Pourghasemi H R and Blaschke T 2019 Predicting Habitat Suitability and Conserving Juniperus spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques Water 11(10) 2049 DOI: 10.3390/w11102049 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.