Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01001
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202122901001
Published online 25 January 2021
  1. Carrio´n, I. M., Antu´nez, E. A., Castillo, M., and Canals, J. (2011). A prediction method for nonlinear time series analysis by combining the false nearest neighbors and subspace identification methods. Int J Appl Math Inform, 5:258–265. [Google Scholar]
  2. Ding, Y., Wang, L., Li, Y., and Li, D. (2018). Model predictive control and its application in agriculture: A review. Computers and Electronics in Agriculture, 151:104–117. [CrossRef] [Google Scholar]
  3. Eddahhak, A., Lachhab, A., Ezzine, L., and Bouchikhi, B. (2007). Performance evaluation of a developing greenhouse climate control with a computer system. AMSE Journal Modelling C, 68(1):53–64. [Google Scholar]
  4. Faiz, S. E. and Benzaouia, A. (2019). Robust pole placement with minimum gain for constrained linear systems. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1127–1131. IEEE. [Google Scholar]
  5. Gandhi, S. V. and Thakker, M. T. (2020). Climate control of greenhouse system using neural predictive controller. In Renewable Energy and Climate Change, pages 211–221. Springer, file = F. [Google Scholar]
  6. Guerbaoui, M., Ed-Dahhak, A., ElAfou, Y., Lachhab, A., Belkoura, L., and Bouchikhi, B. (2013). Implementation of direct fuzzy controller in greenhouse based on labview. International journal of electrical and electronics engineering studies, 1(1):1–13. [CrossRef] [Google Scholar]
  7. Hamidane, H., Elfaiz, S., Guerbaoui, M., Ed-dahhak A., Lachhab, A., and Bouchikhi, B. (2020). Pole placement enhancement of a constrained greenhouse siso system. In 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pages 1–6. IEEE. [Google Scholar]
  8. Lijun, C., Shangfeng, D., Yaofeng, H., and Meihui, L. (2018). Linear quadratic optimal control applied to the greenhouse temperature hierarchal system. IFACPapersOnLine, 51(17):712–717. [Google Scholar]
  9. Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in matlab. In 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), pages 284–289. IEEE. [Google Scholar]
  10. Mohamed, S. and Hameed, I. (2018). A ga-based adaptive neuro-fuzzy controller for greenhouse climate control system. Alexandria Engineering Journal, 57(2):773–779. [CrossRef] [Google Scholar]
  11. Moufid, A. and Bennis, N. (2019). A multi-modelling approach and optimal control of greenhouse climate. In Recent Advances in Electrical and Information Technologies for Sustainable Development, pages 201–208. Springer. [Google Scholar]
  12. Outanoute, M., Lachhab, A., Ed-Dahhak, A., Guerbaoui, M., Selmani, A., and Bouchikhi, B. (2016). Synthesis of an optimal dynamic regulator based on linear quadratic gaussian (lqg) for the control of the relative humidity under experimental greenhouse. International Journal of Electrical & Computer Engineering (2088-8708), 6(5). [Google Scholar]
  13. Santana, D. D., Martins, M. A., and Odloak, D. (2020). An efficient cooperative-distributed model predictive controller with stability and feasibility guarantees for constrained linear systems. Systems & Control Letters, 141:104701. [CrossRef] [Google Scholar]
  14. Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., and Matloobi, M. (2016). Heat transfer and mlp neural network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy and Buildings, 110:314–329. [CrossRef] [Google Scholar]
  15. Wang, F., Mei, X., Rodriguez, J., and Kennel, R. (2017). Model predictive control for electrical drive systemsan overview. CES Transactions on Electrical Machines and Systems, 1(3):219–230. [CrossRef] [Google Scholar]
  16. Wang, Y., Salvador, J. R., de la Pena, D. M., Puig, V., and Cembrano, G. (2018). Economic model predictive control based on a periodicity constraint. Journal of Process Control, 68:226–239. [CrossRef] [Google Scholar]
  17. Xu, X., Sun, Y., Krishnamoorthy, S., and Chandran, K. (2020). An empirical analysis of green technology innovation and ecological efficiency based on a greenhouse evolutionary ventilation algorithm fuzzymodel. Sustainability, 12(9):3886. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.