Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01016
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202122901016
Published online 25 January 2021
  1. Q, Boyu, LI, Hengyi, Z, Xingyue, et al. LowVoltage Ride-Through Techniques in DFIG-Based Wind Turbines: A Review. Applied Sciences, vol. 10, no 6, p. 2154, (2020), doi: 10.3390/app10062154 [CrossRef] [Google Scholar]
  2. S, Tohidi et M, Behnam. A comprehensive review of low voltage ride through of doubly fed induction wind generators. Renewable and Sustainable Energy Reviews, vol. 57, p. 412-419, (2016), doi: https://doi.org/10.1016/j.rser.2015.12.155 [CrossRef] [Google Scholar]
  3. E. Boulaoutaq, M. Kourchi, A. Rachdy, Active Disturbance Rejection Control Strategy for Direct Power Control of a DFIG-Based Wind Turbine Connected to the Undisturbed Utility Grid, International Journal on Engineering Applications (IREA), 8 (5), pp. 165-177, (2020), doi: https://doi.org/10.15866/irea.v8i5.19441 [CrossRef] [Google Scholar]
  4. Global Wind Energy Council (GWEC), GLOBAL WIND REPORT 2019, (April 2020). [Google Scholar]
  5. V. Yaramasu and B. Wu, Model predictive control of wind energy conversion systems. Piscataway: IEEE Press, (2017). [CrossRef] [Google Scholar]
  6. E. Boulaoutaq, M. Kourchi, A. Rachdy, “ Internal Model Control of Pursuit and Limitation of the Maximum Power Generated by a Wind Turbine based on the DFIG, “ in Journal of Advanced Research in Dynamical and Control Systems (JARDCS), vol 12, no 4 -Special Issue, pp 10011015, (April 2020), doi: https://www.jardcs.org/abstract.php?id=3500 [Google Scholar]
  7. X. Chen, L. Yan, X. Zhou and H. Sun, “A Novel DVR-ESS-Embedded Wind-Energy Conversion System, ” in IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1265-1274, (July 2018), doi: 10.1109/TSTE.2017.2781287. [CrossRef] [Google Scholar]
  8. E. Boulaoutaq, M. Kourchi, A. Rachdy, Nonlinear Active Disturbance Rejection Control for Improving Low-Voltage Ride Through Capability of DFIG-Based WECS, International Review on Modelling and Simulations (IREMOS), 13 (3), pp. 141-147, (2020), doi: https://doi.org/10.15866/iremos.v13i3.18527 [CrossRef] [Google Scholar]
  9. M. S. El Moursi, K. Goweily, J. L. Kirtley and M. Abdel-Rahman, “Application of Series Voltage Boosting Schemes for Enhanced Fault Ridethrough Performance of Fixed Speed Wind Turbines, ” in IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 61-71, (Feb. 2014), doi: 10.1109/TPWRD.2013.2287398 [CrossRef] [Google Scholar]
  10. D. Zhang, H. Xu, L. Qiao et al., LVRT capability enhancement of DFIG based wind turbine with coordination control of dynamic voltage restorer and inductive fault current limiter. PloS one, vol. 14, no 8, p. e0221410, (2019), doi: https://doi.org/10.1371/journal.pone.0221410 [CrossRef] [Google Scholar]
  11. Y. M. Alsmadi, L. Xu, F. Blaabjerg, A. P. Ortega and A. Wang, “Comprehensive analysis of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions, ” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, pp. 4178-4187, (2015), doi: 10.1109/ECCE.2015.7310250. [CrossRef] [Google Scholar]
  12. P. M. Tripathi, S. Sekhar Sahoo and K. Chatterjee, “Enhancing the fault ride through capability of DFIG-based wind energy system using saturated core fault current limiter, ” in The Journal of Engineering, vol. 2019, no. 18, pp. 4916-4921, (7 2019), doi: 10.1049/joe.2018.9296. [CrossRef] [Google Scholar]
  13. A. Rini Ann Jerin, P. Kaliannan, U. Subramaniam and M. Shawky El Moursi, “Review on FRT solutions for improving transient stability in DFIGWTs, ” in IET Renewable Power Generation, vol. 12, no. 15, pp. 1786-1799, (1911 2018), doi: 10.1049/iet-rpg.2018.5249 [CrossRef] [Google Scholar]
  14. P. K. Gayen, D. Chatterjee, et S. K. Goswami, An improved low-voltage ridethrough performance of DFIG based wind plant using stator dynamic composite fault current limiter. ISA transactions, vol. 62, p. 333-348, (2016), doi: 10.1016/j.isatra.2016.01.023 [CrossRef] [PubMed] [Google Scholar]
  15. R. A. J. Amalorpavaraj, P. Kaliannan, S. Padmanaban, U. Subramaniam and V. K. Ramachandaramurthy, “Improved Fault Ride Through Capability in DFIG Based Wind Turbines Using Dynamic Voltage Restorer with Combined Feed-Forward and Feed-Back Control, ” in IEEE Access, vol. 5, pp. 20494-20503, (2017), doi: 10.1109/ACCESS.2017.2750738. [CrossRef] [Google Scholar]
  16. G. Pannell, B. Zahawi, D. J. Atkinson and P. Missailidis, “Evaluation of the Performance of a DC-Link Brake Chopper as a DFIG Low-Voltage Fault-Ride-Through Device, ” in IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 535-542, (Sept. 2013), doi: 10.1109/TEC.2013.2261301. [CrossRef] [Google Scholar]
  17. T. K. Roy, M. A. Mahmud, S. N. Islam and A. M. T. Oo, “Direct Power Controller Design for Improving FRT Capabilities of DFIG-Based Wind Farms using a Nonlinear Backstepping Approach, ” 2018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka, pp. 240-245, (2018), doi: 10.1109/ICPESYS.2018.8626979. [Google Scholar]
  18. G. Rashid and M. H. Ali, “Nonlinear Control-Based Modified BFCL for LVRT Capacity Enhancement of DFIG-Based Wind Farm, ” in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 284-295, (March 2017), doi: 10.1109/TEC.2016.2603967. [CrossRef] [Google Scholar]
  19. A. Benali, M. Khiat, T. Allaoui and M. Denaï, “Power Quality Improvement and Low Voltage Ride Through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer, ” in IEEE Access, vol. 6, pp. 68634-68648, (2018), doi: 10.1109/ACCESS.2018.2878493. [CrossRef] [Google Scholar]
  20. A. O. Ibrahim, T. H. Nguyen, D. Lee and S. Kim, “A Fault Ride-Through Technique of DFIG Wind Turbine Systems Using Dynamic Voltage Restorers, ” in IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 871-882, (Sept. 2011), doi: 10.1109/TEC.2011.2158102. [CrossRef] [Google Scholar]
  21. M. Farhadi-Kangarlu, E. Babaei, and F. Blaabjerg, “A comprehensive review of dynamic voltage restorers, ’’ Int. J. Electr. Power, Energy Syst., “ vol. 30, no. 92, pp. 136-155, (Nov. 2017), doi: 10.1016/j.ijepes.2017.04.013. [CrossRef] [Google Scholar]
  22. Y. W. Li, D. M. Vilathgamuwa, F. Blaabjerg and P. C. Loh, “A Robust Control Scheme for MediumVoltage-Level DVR Implementation, ” in IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2249-2261, (Aug. 2007), doi: 10.1109/TIE.2007.894771. [CrossRef] [Google Scholar]
  23. J. Roldán-Pérez, A. García-Cerrada, J. L. ZamoraMacho, P. Roncero-Sánchez, and E. Acha, “Troubleshooting a digital repetitive controller for a versatile dynamic voltage restorer, ’ Int. J. Electr. Power Energy Syst., vol. 57, pp. 105-115, (May 2014), doi: 10.1016/j.ijepes.2013.11.054. [CrossRef] [Google Scholar]
  24. Hyosung Kim and Seung-Ki Sul, “Compensation voltage control in dynamic voltage restorers by use of feed forward and state feedback scheme, ” in IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1169-1177, (Sept. 2005), doi: 10.1109/TPEL.2005.854052. [CrossRef] [Google Scholar]
  25. M. Sarhangzadeh, S. H. Hosseini, M. B. B. Sharifian, G. B. Gharehpetian and O. Sarhangzadeh, “Dynamic analysis of DVR implementation based on nonlinear control by IOFL, ” 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, pp. 000264-000269, (2011), doi: 10.1109/CCECE.2011.6030451. [Google Scholar]
  26. P. Huang, M. S. El Moursi, W. Xiao and J. L. KirtleyJr, “Novel Fault Ride-Through Configuration and Transient Management Scheme for Doubly Fed Induction Generator, ” in IEEE Transactions on Energy Conversion, vol. 28, no. 1, pp. 86-94, (March 2013), doi: 10.1109/TEC.2012.2222886. [CrossRef] [Google Scholar]
  27. J. Xu, A. M. Gole and C. Zhao, “The Use of Averaged-Value Model of Modular Multilevel Converter in DC Grid, ” in IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 519-528, (April 2015), doi: 10.1109/TPWRD.2014.2332557. [CrossRef] [Google Scholar]
  28. J. Peralta, H. Saad, S. Dennetière and J. Mahseredjian, “Dynamic performance of averagevalue models for multi-terminal VSC-HVDC systems, ” 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1-8, (2012), doi: 10.1109/PESGM.2012.6345610. [Google Scholar]
  29. A. A. Hussein and M. Hasan Ali, “Comparison among series compensators for transient stability enhancement of doubly fed induction generator based variable speed wind turbines, ” in IET Renewable Power Generation, vol. 10, no. 1, pp. 116-126, (1 2016), doi: 10.1049/iet-rpg.2015.0055. [CrossRef] [Google Scholar]
  30. D. Ramirez, S. Martinez, C. A. Platero, F. Blazquez and R. M. de Castro, “Low-Voltage Ride-Through Capability for Wind Generators Based on Dynamic Voltage Restorers, ” in IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 195-203, (March 2011), doi: 10.1109/TEC.2010.2055869. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.