Open Access
Issue |
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
|
|
---|---|---|
Article Number | 01039 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202122901039 | |
Published online | 25 January 2021 |
- Androutsopoulos, I., Ritchie, G. and Thanisch, P. (1995) « Natural language interfaces to databases: an introduction », Natural Language Engineering, Vol. 1, No. 1, pp.29–81. [CrossRef] [Google Scholar]
- N. Ranjan, K. Mundada, K. Phaltane, and S. Ahmad, “A Survey on Techniques in NLP, ” Int. J. Comput. Appl., Vol. 134, no. 8, pp. 6–9, (2016). [Google Scholar]
- Karam. A, Mustapha. M, Mourad. E, Brahim. E, Jilali. A, « Comparative study of existing approaches on the Task of Natural Language to Database Language », ICCSRE, p 1-6. (2019). [Google Scholar]
- E. U. Reshma and P. C. Remya, “A review of different approaches in natural language interfaces to databases, ” in Proceedings of the International Conference on Intelligent Sustainable Systems, ICISS 2017, (2018). [Google Scholar]
- Woods, William A, Ronald M Kaplan, and Bonnie Nash-Webber, « natural language information system », (1972). The lunar sciences. [Google Scholar]
- Javubar SK, Jay A. (2015). «Natural language to SQL generation for semantic knowledge extraction in social web sources». Indian Journal of Science and Technology, 8(1):1-10. [CrossRef] [Google Scholar]
- Mrs. Neelu Nihalani, Dr. Sanjay Silakari, Dr. Mahesh Motwani. “Natural language Interface to Database using Semantic Matching”, International Journal of Computer Application, Vol. 31, no. 11, Oct. (2011) ISSN: 0975-8887. [Google Scholar]
- Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates, « Modern Natural Language Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability », COLING (2004). [Google Scholar]
- Harry R. Tennant Kenneth M. Ross Richard M. Saenz, « Menu-based natural language understanding system », national computer conference and exposition (1984), Pages 629–635. [Google Scholar]
- Hanane Bais, Mustapha Machkour, Lahcen Koutti, « An Arabic natural language interface for querying relational databases based on natural language processing and graph theory methods », International Journal of Reasoning-Based Intelligent Systems, (2018). [Google Scholar]
- Mohit Dua, Sandeep Kumar, Zorawar Singh Virk, « Hindi Language Graphical User Interface to Database Management System », (2013) 12th International Conference on Machine Learning and Applications. [Google Scholar]
- Bentamar Hemerelain, Hafida Belbachir, « Semantic Analysis of Natural Language Queries for an Object-Oriented Database », Software Engineering & Applications, (2010), 3, 1047-105. [CrossRef] [Google Scholar]
- Xiaofeng. M, S. Wang, and Kam Fai Wong, « Overview of A Chinese Natural Language Interface to Databases: NChiql », International Journal of Computer Processing of Languages, Vol. 14, No. 03, pp. 213-232 (2001). [CrossRef] [Google Scholar]
- Kailash Pati Mandala, Prasenjit Mukherjee, Baisakhi Chakraborty and Atanu Chattopadhyay. A novel Bengali Language Query Processing System (BLQPS) in medical domain. Intelligent Decision Technologies-1 (2019) 1–16. [Google Scholar]
- Basik, F., Hättasch, B., Ilkhechi, A., Usta, A., Ramaswamy, S., Utama, P., & Cetintemel, U. «A Learned NL-Interface for Databases ». International Conference on Management of Data (pp. 1765-1768), (2018). [Google Scholar]
- B Green, A Wolf, C. Chomsky, K Laughery, « BASEBALL: an automatic question answerer », western joint IRE-AIEE-ACM computer conference May (1961), Pages 219–224. [Google Scholar]
- Woods, William A, Ronald M Kaplan, and Bonnie Nash-Webber, « natural language information system », (1972). The lunar sciences. [Google Scholar]
- David L. Waltz, «An English language question answering system for a large relational database », Communications of the ACM, (1978). [Google Scholar]
- G. Hendrix, « A NATURAL LANGUAGE INTERFACE », Computational Linguistics, Vol. 8, no. 2, pp.55-61, (1982). [Google Scholar]
- E.F. Codd, « A STEP Towards Realizing Codd’s Vision of Rendezvous with the Casual User », Data Base Management, Ed: North-Holland Publishers, (1974). [Google Scholar]
- David H. D. Warren, Fernando C. N. Pereira, «An efficient easily adaptable system for interpreting natural language queries », Computational Linguistics (1982). [Google Scholar]
- G. Ritchie, I. Androutsopoulos, P. Thanisch, « Masque/sql », (1993). [Google Scholar]
- Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates, « Modern Natural Language Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability », COLING (2004). [Google Scholar]
- Yunyao Li, Huahai Yang, and H.V. Jagadish, Nalix: « an Interactive Natural Language Interface for Querying XML», SIGMOD (2005). [Google Scholar]
- Hanane Bais, Mustapha Machkour, Lahcen Koutti, « Querying database using a universal natural language interface based on machine learning », (2016) International Conference on Information Technology for Organizations Development (IT4OD). [Google Scholar]
- Hanane Bais, Mustapha Machkour, Lahcen Koutti, « An Arabic natural language interface for querying relational databases based on natural language processing and graph theory methods », International Journal of Reasoning-Based Intelligent Systems, (2018). [Google Scholar]
- J. Gu, Z. Lu, H. Li, and V. O. K. Li. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. ArXiv e-prints, March (2016). [Google Scholar]
- Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from natural language using reinforcement learning. arXiv preprint arXiv: 1709.00103, (2017). [Google Scholar]
- V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating struct queries from natural lang. using reinforcement learning, ” CoRR, vol. abs/1709.00103, (2017). [Google Scholar]
- T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, et al., “Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, ” in Proc. of the 2018 Conf. on Empirical Methods in Natural Lang. Process., pp. 3911–3921, (2018). [CrossRef] [Google Scholar]
- Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R. Lyu, Irwin King, Steven C.H. Hoi. Photon: A Robust Cross-Domain Text-to-SQL System. The 58th Annual Meeting of the Association for Computational Linguistics. ACL 2020. [Google Scholar]
- IE-SQL: Text-to-SQL as Information Extraction. (2020) Association for Computing Machinery. [Google Scholar]
- X. Zhang, F. Yin, G. Ma, B. Ge and W. Xiao, “MSQL: Multi-Task Representation Learning for Single-Table Text2sql Generation, ” in IEEE Access, Vol. 8, pp. 43156-43167, (2020), doi: 10.1109/ACCESS.2020.2977613. [CrossRef] [Google Scholar]
- Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi, Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen Eger, Ugur Cetintemel, and Carsten Binnig. DBPal: A Fully Pluggable NL2SQL Training Pipeline. SIGMOD ’20: Proceedings of the (2020) ACM SIGMOD International Conference on Management of Data, June 2020 Pages 2347–2361. [CrossRef] [Google Scholar]
- Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, Matthew Richardson. RATSQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7567–7578, July 5 10, (2020). [CrossRef] [Google Scholar]
- Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh Vaichal, Chandra Khatri, Peter Relan. Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker. WeCNLP (2020). Computation and Language (cs.CL). [Google Scholar]
- DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, Dong Ryeol Shin. RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases. (2020) Computation and Language (cs.CL). [Google Scholar]
- Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou, Ayushi Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankaranarayanan. ATHENA++: natural language querying for complex nested SQL queries. (2020) proceedings of the VLDB Endowment, Vol. 13, No. 11, ISSN 2150-8097. [Google Scholar]
- Ursin Brunner, Kurt Stockinger. ValueNet: A Neural Text-to-SQL Architecture Incorporating Values. (2020) proceedings of the VLDB Endowment. [Google Scholar]
- Apostolos Glenis, Georgia Koutrika. NLonSpark: NL to SQL translation on top of Apache Spark. (2020) Association for Computing Machinery. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.