HTTP_Request2_Exception Unable to connect to tcp://think-ws.ca.edps.org:85. Error: php_network_getaddresses: getaddrinfo failed: Name or service not known Molecular dynamics simulation of lithium fluoride in aqueous solutions at different temperatures 300 K – 360 K | E3S Web of Conferences
Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01045
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202122901045
Published online 25 January 2021
  1. C. Monroe, J. Newman, The effect of interfacial deformation on electrode position kinetics. J. Electrochem. Soc. A880–A886, 151 (2004). [CrossRef] [Google Scholar]
  2. J. Jones et al., Thermodynamic of LiF dissolution in alkyl carbonates and some of their mixtures with water. Fluid Phase Equilib. 62–68, 285 (2009). [CrossRef] [Google Scholar]
  3. W. D. Richards et al., Interface stability in solidstate batteries. Chem. Mater. 266–273, 28 (2016). [CrossRef] [Google Scholar]
  4. Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces. 23685–23693, 7 (2015). [CrossRef] [Google Scholar]
  5. Y. Ozhabes, D. Gunceler, T. A. Arias, Stability and surface diffusion at lithium electrolyte interphases with connections to dendrite suppression. ArXiv:1504.05799, (22 April 2015). [Google Scholar]
  6. K. D. Collins, G. W. Neilson, J. E. Enderby, Ions in water: Characterizing the Forces that Control Chemical Processes and Biological Structure, Biophys. Chem. 95-104, 128 (2007). [CrossRef] [PubMed] [Google Scholar]
  7. B. Morel, B. Duperret, Uranium and fluorine cycles in the nuclear industry, J. Fluorine. Chem. 7–10, 130 (2009). [CrossRef] [Google Scholar]
  8. I. Ponsot, R. Falcone, E. Bernardo, Stabilization of fluorine-containing industrial waste by production of sintered glass-ceramics, Ceram. Int. 6907–6915, 39 (2013). [CrossRef] [Google Scholar]
  9. H. Li, B. J. Teppen, D. A. Laird, C. T. Johnston, S.A. Boyd, Effects of Increasing Potassium Chloride and Calcium Chloride Ionic Strength on Pesticide Sorption by Potassiumand Calcium-Smectite, Soil Science Society of America Journal. 1889-1895, 70 (2006). [CrossRef] [Google Scholar]
  10. D. E. Galvez-Aranda, J. M. Seminario, Simulations of a LiF Solid Electrolyte Interphase Cracking on Silicon Anodes Using Molecular Dynamics, Journal of The Electrochemical Society. A717-A730, 165 (2018). [CrossRef] [Google Scholar]
  11. S. Choudhury, L. A. Archer, Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities, Advanced Electronic Materials. 1500246, 2 (2016). [Google Scholar]
  12. M. He, R. Guo, G. M. Hobold, H. Gao, B. M. Gallant, The Intrinsic Behavior of Lithium Fluoride in Solid Electrolyte Interphases on Lithium, Applied Physical Sciences. 73-79, 117 (2020). [Google Scholar]
  13. H. L. Song, C. R. Jayendran, Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 °C, J. Phys. Chem. 1420-1425, 100 (1996). [Google Scholar]
  14. Sameer Varma, Susan B. Rempe, Coordination Numbers of Alkali Metal Ions in Aqueous Solutions, Biophysical Chemistry. 192–199, 124 (2006). [CrossRef] [PubMed] [Google Scholar]
  15. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput. 435-447, 4 (2008). [CrossRef] [PubMed] [Google Scholar]
  16. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 8577-8593, 103 (1995). [Google Scholar]
  17. M. Parrinello, A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 7182-7190, 52 (1981). [CrossRef] [Google Scholar]
  18. H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 6269-6271, 91 (1987). [CrossRef] [Google Scholar]
  19. D. Corradini, M. Rovere, P. Gallo, A route to explain water anomalies from results on an aqueous solution of salt, J. Chem. Phys. 134508-1/134508-5, 132 (2010). [Google Scholar]
  20. G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, W. L. Jorgensen, Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides, J. Phys. Chem. B. 6474-6487, 105 (2001). [CrossRef] [Google Scholar]
  21. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 255-268, 52 (1984). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. W. G. Hoover, Phys. Canonical Dynamics: Equilibrium phase-space distributions, Phys. Rev. A. 1695-1697, 31 (1985). [CrossRef] [PubMed] [Google Scholar]
  23. M. Neumann. Dipole moment fluctuation formulas in computer simulations of polar systems, Molecular Physics. 841-858, 50 (1983). [CrossRef] [Google Scholar]
  24. Sheng-Bai Zhu and G. Wilse Robinson. Molecular Dynamics Study of an Aqueous LiF Solution. Z. Naturforsch. 221–228, 46a (1990). [Google Scholar]
  25. L. Zhang, S. Yan, R. I. Cukier and Y. Bu. Solvation of Excess Electrons in LiF Ionic Pair Matrix: Evidence for a Solvated Dielectron from Ab Initio Molecular Dynamics Simulations and Calculations, J. Phys. Chem. B. 3767-3772, 112 (2008). [CrossRef] [Google Scholar]
  26. I. S. Joung and T. E. Cheatham. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations, J. Phys. Chem. B. 9020–9041, 112 (2008). [CrossRef] [PubMed] [Google Scholar]
  27. C. J. Fennell, A. Bizjak, V. Vlachy and K. A. Dill. Ion Pairing in Molecular Simulations of Aqueous Alkali Halide Solutions, J. Phys. Chem. B. 6782–6791, 113 (2009). [CrossRef] [PubMed] [Google Scholar]
  28. K. Ibuki and P. A. Bopp. Molecular dynamics simulations of aqueous LiCl solutions at room temperature through the entire concentration range, J. Mol. Liquids. 56-63, 147 (2009). [CrossRef] [Google Scholar]
  29. R. W. Impey, P. A. Madden, I. R. McDonald. Hydration and Mobility of Ions in Solution. J. Phys. Chem. 5071-5083, 87 (1983). [CrossRef] [Google Scholar]
  30. M. R. Reddy and M. Berkowitz. The dielectric constant of SPC/E water, Chem. Phys. Letters. 173-176, 155 (1989). [CrossRef] [Google Scholar]
  31. G. Raabe and R. J. Sadus. Molecular dynamics simulation of the dielectric constant of water: The effect of bond flexibility, J. Chem. Phys. 23450, 134 (2011). [Google Scholar]
  32. D. Saric, M. Kohns and J. Vrabec. Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: A force field assessment, J. Chem. Phys. 164502, 152 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.