Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01009
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123001009
Published online 18 January 2021
  1. Kvenvolden, K.A., Ginsburg, G.D., & Soloviev, V.A. (1993) Worldwide distribution of subaquatic gas hydrates. Geo-Marine Letters, (13), 32–40. https://doi.org/10.1007/BF01204390 [CrossRef] [Google Scholar]
  2. Makogon, Yu. F. (2010). Gazogidraty. Istoriya izucheniya i perspektivy osvoyeniya. Geologiya i Poleznyye Iskopayemyye Mirovogo Okeana, 2(20), 5–21. [Google Scholar]
  3. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6 (89)), 48–55. https://doi.org/10.15587/1729-4061.2017.112313 [Google Scholar]
  4. Denisov, Y.P., & Klymenko, V.V. (2014). Sravnitel’nyy analiz tekhnologiy dobychi gazogidratnogo metana. Naukovyy Zhurnal (Heolohiya. Hirnytstvo. Naftohazova Sprava. Enerhetyka), 1(3), 13–22. [Google Scholar]
  5. Vytiaz. O.Yu., Femiak, Ya.M., & Ovetskyi, S.O. (2014). Klasyfikatsiia sposobiv vydobuvannia metanu z hazohidratnykh pokladiv dna Chornoho moria. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, 1(50), 13–23. [Google Scholar]
  6. Goshovskiy, S.V., & Zur’yan, A.V. (2018). Sposoby i tekhnologii dobychi gaza metana iz akvalnykh gazogidratnykh formirovaniy. Mineralni Resursy Ukrainy, (3), 124–127. https://doi.org/10.31996/mru.2018.4.26-31 [Google Scholar]
  7. Prohnozne otsiniuvannia ta khid osvoiennia vydobuvannia netradytsiinykh dzherel pryrodnoho hazu v umovakh konkurentsii na enerhetychnomu rynku. (2013). Kyiv, Ukraina: Viddil informatsiino analitychnoho zabezpechennia zarubizhnoiu informatsiieiu NTTSE NEK “Ukrenerho”. [Google Scholar]
  8. DaRosa, AldoVieira. (2009). Chapter 4 – Ocean thermal energy converters. Fundamentals of Renewable Energy Processes, 139–152. https://doi.org/10.1016/B978-0-12-374639-9.00004-X [Google Scholar]
  9. Ocean thermal energy conversion. (2019). Retrieved from https://en.wikipedia.org/wiki/Ocean_thermal_energy_conversion [Google Scholar]
  10. William, H., Avery, Chih Wu. (1994). Renewable energy from the ocean: A guide to OTEC. New York, United States: Oxford University Press, 446 p. [Google Scholar]
  11. Korobkov, V.A. (1986). Ocean energy conversion. Saint Petersburg, Russian Federation: Shipbuilding, 280 p. [Google Scholar]
  12. Anderson, J.H. (1967). Sea water power plant. Patent US 3312054. [Google Scholar]
  13. Faizal, M., & Ahmed, M.R. (2013). Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference. Renewable Energy, (51), 234–240. https://doi.org/10.1016/j.renene.2012.09.041 [CrossRef] [Google Scholar]
  14. Hawaii first to harness deep ocean temperatures for power. (2019). Retrieved from https://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures-for-power/ [Google Scholar]
  15. Semmari, H., Stitou, D., & Mauran, S. (2012). A novel Carnot-based cycle for ocean thermal energy conversion. Energy, 43(1), 361–375. https://doi.org/10.1016/j.energy.2012.04.017 [CrossRef] [Google Scholar]
  16. Masanori Kobayashi. (2015). Potential role of deep seawater for cooling and air conditioning in small island nations. ESMAP Knowledge Exchange Forum “Sustainable Energy For SIDS”, 1–22. [Google Scholar]
  17. Buchanan, A.B. (1962). Removing salt from sea water. Patent US 3027320. [Google Scholar]
  18. Klymenko, V.V. (1974). The use of natural sea water temperature difference to produce fresh water and cold. Refrigeration Equipment and Technology, (19), 75–79. [Google Scholar]
  19. Denisov, Y.P., & Klymenko, V.V. (2016). Plant gas-hydrate for produce electricity and fresh water. The News of the Polytechnical Institute, 3(126), 65–72. [Google Scholar]
  20. Denisov, Û.P., Klimenko, V.V., Rybicki, C., & Martinenko, V. (2017). Technology for development of methane-hydrate deposits jointly with receiving fresh water. AGH Drilling, Oil, Gas, 34 (2),531. https://doi.org/10.7494/drill.2017.34.2.531 [CrossRef] [Google Scholar]
  21. Makogon, Yu.F. (1974). Hydrates of natural gases. Moscow, Russian Federation: Nedra, 208 p. [Google Scholar]
  22. Makogon, Yu.F. (1997). Hydrates of hydrocarbons. Tulsa, United States: Penn Well, 504 p. [Google Scholar]
  23. Voronov, V.P., Gorodetskiy, E.E., Muratov, A.R., & Podnek, V.E. (2014). Issledovanie zamescheniya metana, soderzhaschegosya v gidrate, uglekislyim gazom pri siklicheskom dobavlenii uglekislogo gaza i otkachke gazovoy smesi, sosuschestvuyuschey s gidratom. Aktualnyie Problemy Nefti i Gaza, 1(9), 1–9. [Google Scholar]
  24. Klymenko, V., Gutsul, V., Bondarenko, V., Martynenko, V., & Stets, P. (2019). Modeling of the kinetics of the gas hydrates formation on the basis of a stochastic approach. Solid State Phenomena, (291), 98–109. https://doi.org/10.4028/www.scientific.net/ssp.291.98 [CrossRef] [Google Scholar]
  25. Klymenko, V.V., & Bandurina, O.V. (2012). Makrofizychna model protsesu zamishchennia dvooksydom vuhletsiu metanu u hazohidratnykh pokladakh. Visnyk KrNU imeni Mykhayla Ostrohradskoho, 6(77), 79–82. [Google Scholar]
  26. Koltun, P., & Klymenko, V. (2016). Methane Hydrates – Australian perspective. Mining of Mineral Deposits, 10(4), 11–18. https://doi.org/10.15407/mining10.04.011 [CrossRef] [Google Scholar]
  27. Martynovsky, V.S. (1972). Analysis of real thermodynamic cycles. Moscow, Russian Federation: Energia, 216 p. [Google Scholar]
  28. Pavlov, K.F., Romankov, P.G., & Noskov, A.A. (1981). Examples and problems at the rate of processes and apparatuses of chemical technology. Saint Petersburg, Russian Federation: Chemistry, 560 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.