Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01114
Number of page(s) 6
Section NESEE2020-New Energy Science and Environmental Engineering
Published online 27 January 2021
  1. Zhang J.N., Hu W.P., Cao S., Piao L.Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting[J]. Nano Research, 2020, 13: 2313-2322. [Google Scholar]
  2. Han B., and Hu Y.H. Highly Efficient Temperature-Induced Visible Light Photocatalytic Hydrogen Production from Water[J]. J. Phys. Chem. C, 2015, 119: 18927-18934. [CrossRef] [Google Scholar]
  3. Liu A.Y., Cohen M.L. Prediction of new low compressibility solids[J]. Science, 1989, 245(4920): 841-842. [Google Scholar]
  4. Teter D.M., Hemley R.J. Low-compressibility carbon ni-tride[J]. Science, 1996, 271: 53-55. [Google Scholar]
  5. Da Silva E.S., Moura N.M.M., Coutinho A., et al. β-Cyclodextrin as a precursor to holey C-doped g-C3N4 nanosheets for photocatalytic hydrogen generation[J]. ChemSusChem, 2018, 11: 2681-2694. [CrossRef] [PubMed] [Google Scholar]
  6. Lima M.J., Silva A.M.T., Silva C.G., et al. Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol[J]. J. Catal, 2017, 353: 44-53. [Google Scholar]
  7. Naseri A., Samadi M., Pourjavadi A.Z., et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J]. J. Mater. Chem. A, 2017, A 5: 23406-23433. [CrossRef] [Google Scholar]
  8. Giannakoudakis D.A., Hu Y., Florent M., et al. Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents[J]. Nanoscale Horizons, 2017, 2: 356-364. [CrossRef] [PubMed] [Google Scholar]
  9. Wang X.C., Maeda K., Thomas A., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8: 76-80. [CrossRef] [PubMed] [Google Scholar]
  10. Zhang J.S., Chen X.F., Takanabe K., et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angew. Chem. Int. Ed., 2010, 49(2): 441-444. [CrossRef] [Google Scholar]
  11. Cui Y.J., Ding Z.X., Liu P., et al. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants[J]. Phys. Chem. Chem. Phys., 2012, 14: 1455-1462. [CrossRef] [PubMed] [Google Scholar]
  12. Liu J.H., Zhang T., Wang Z.G., et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. J. Mater. Chem., 2011, 21:14398-14401. [Google Scholar]
  13. Maeda K., Wang X.C., Nishihara Y., et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. J. Phys. Chem. C, 2009, 113(12): 4940-4947. [CrossRef] [Google Scholar]
  14. Reuter K., Scheffler M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure[J]. Physical Review B., 2001, 65(3): 35406-49901. [Google Scholar]
  15. Wang X.C., Blechert S., Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catal., 2012, 2(8):1596-1606. [Google Scholar]
  16. Cheng N.Y., Tian J.Q., Liu Q., et al. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: Green photocatalytic synthesis and application toward the degradation of organic pollutants[J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 6815-6819. [Google Scholar]
  17. Wang X.C., Mi W.B., Jiang E.Y., et al. Large magnetoresistance observed in facing-target sputtered Ni-doped CNx amorphous composite films[J]. Acta Materialia, 2007, 55(10) : 3547-3553. [Google Scholar]
  18. Ong W.J., Tan L.L., Ng Y.H., et al. Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chem. Rev, 2016, 116: 7159-7329. [CrossRef] [PubMed] [Google Scholar]
  19. Xu J., Wang G.X., Fan J.J., et al. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 274: 77-84. [Google Scholar]
  20. Di Y., Wang X.C., Thomas A., et al. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light[J]. ChemCatChem, 2010, 2(7) : 834-838. [Google Scholar]
  21. Bhunia K., Chandra M., Khilari S., et al. Bimetallic PtAu alloy nanopartices-intergrated g-C3N4 as an efficient photocatalyst for water-to-hydrogen conversion[J]. ACS Applied Materials & Interfaces, 2018 [Google Scholar]
  22. Chen S., Wang C., Bunes B.R., et al. Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates[J]. Applied Catalysis A: General, 2015, 498: 63-68. [CrossRef] [Google Scholar]
  23. Qin J., Huo J., Zhang P., Zeng J., et al. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible irradiation[J]. Nanoscale, 2016, 8(4): 2249-2259. [PubMed] [Google Scholar]
  24. Dang H., Tan G., Yang W., et al. Enhanced visible-light photocatalytic H2 production of graphitic carbon nitride nanosheets by dye-sensitization combined with surface plasmon resonance[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 185-194. [Google Scholar]
  25. Liu Y., Wu X., Lv H., et al. Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3 modification and dye-sensitization[J]. Dalton Trans., 2019, 48: 1217-1225. [CrossRef] [PubMed] [Google Scholar]
  26. Wang C., Fu M., Cao J., et at. BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance[J]. Chemical Engineering Journal, 2020, 385: 123833. [CrossRef] [Google Scholar]
  27. Paul T., Das D., Das B.K., et al. CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst[J]. Journal of Hazardous Materials, 2019, 380: 120855. [CrossRef] [PubMed] [Google Scholar]
  28. Wang C.H., Qin D.D., Shan D.L., et al. Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation[J]. Phys Chem Phys, 2017, 19: 4507-4515. [CrossRef] [Google Scholar]
  29. Yang L.Y., Liu J., Yang L.P., et al. Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution[J]. Renewable Energy, 2020, 145: 691-698. [Google Scholar]
  30. Xie Z.J., Feng Y.P., Wang F.L., et al. Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity[J]. Separation and Purification Technology, 2018, 195: 332-338. [Google Scholar]
  31. Wang Y., Wang Q., Zhan X., et al. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review[J]. Nanoscale, 2013, 5, 8326-8339. [PubMed] [Google Scholar]
  32. Marschall R. Photocatalysis: Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. 2014 , 24: 2421-2440. [Google Scholar]
  33. Wu S.J., Zhao H.J., Li C.F., et al, Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity[J]. Journal of Colloid and Interface Science, 2018, 538: 99-107. [PubMed] [Google Scholar]
  34. RenY.J., Zeng D.Q., Ong W.J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review[J].Chinese Journal of Catalysis, 2019, 40: 289-319. [CrossRef] [Google Scholar]
  35. Cai Z., Zhou Y., Ma S., et al. Enhanced visible light photocatalytic performance of g-C3N4/CuS p-n heterojunctions for degradation of organic dyes[J]. J. Photochem. Photobiol. A Chem. 2017, 348: 168– 178. [Google Scholar]
  36. Xie Z.J., Feng Y.P., Wang F.L., et al. Construction of carbon dots modifified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. AppliedCatalysis B: Environmental, 2018, 229: 96-104. [CrossRef] [Google Scholar]
  37. Huang L.Y., Xu, H., Zhang R.X., et al. Synthesis and characterization of g-C3N4/MoO3 photocatalyst With improved visible-light photoactivity[J]. Applied Surface Science, 2013, 283: 25-32. [Google Scholar]
  38. Li H.T., Liu R.H., Lian S.Y., et al. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction[J]. Nanoscale, 2013, 5: 3289-3297. [PubMed] [Google Scholar]
  39. Wang Y., Wang X.C., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew. Chem. Int. Ed., 2012, 51: 68-89. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.