Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02037
Number of page(s) 4
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. Blomster. J, Back. S, Fewer. D.P, Kiirikki. M, Lehvo. A, Maggs. C.A, Stanhope. M.J. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. Am J Bot. 89(11): p. 1756–1763 (2002). [CrossRef] [PubMed] [Google Scholar]
  2. Merceron. M, Antoine. V, Auby. I, Morand. P. In situ growth potential of the subtidal part of green tide forming Ulva spp. Stocks. Sci Total Environ. 384(1–3): p. 293–305 (2007). [CrossRef] [PubMed] [Google Scholar]
  3. Nelson. T.A, Haberlin. K, Nelson. A.V, Ribarich. H, Hotchkiss. R, Van-Alstyne. K.L, Buckingham. L, Simunds. D.J, Fredrickson. K. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology. 89(5): p. 1287–1298 (2008). [CrossRef] [PubMed] [Google Scholar]
  4. Smetacek. V, Zingone. A. Green and golden seaweed tides on the rise. Nature. 504: p. 84–88 (2013). [PubMed] [Google Scholar]
  5. Zhang. J.H, Liu. C.C, Yang. L.L, Gao. S, Ji. X, Huo. Y.Z, Yu. K.F, Xu. R, He. P.M. The source of the Ulva blooms in the East China Sea by the combination of morphological, molecular and numerical analysis. Estuar Coast Shelf Sci. 164: p. 418–424 (2015). [Google Scholar]
  6. Cui. J.J, Zhang. J.H, Monotilla. A.P, Huo. Y.Z, Shi. J.T., Zhao. X.H, Kang. X.Y, He. P.M. Assessment of blooming Ulva macroalgae production potential in the Yellow Sea, China. Phycologia. 58(5): p. 535–541 (2019). [Google Scholar]
  7. Liu. J.L, Zhao. X.H, Kang. X.Y, Zhuang. M.M, Ding. X.W, Zhao. L.J, Wen. Q.L, Zhu. Y, Gu. K, Bao. Q.J, Yang. X.Q, Zhang. J.H, He. P.M. Good news: we can identify Ulva species erupted in the Yellow Sea more easily and cheaply now. Conserv Genet Resour. 12(3): p. 447–449 (2020). [Google Scholar]
  8. Zhao. X.H, Cui. J.J, Zhang. J.H, Shi. J.T, Kang. X.Y, Liu. J.L, Wen. Q.L, He. P.M. Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis. Mar Pollut Bull. 146: p. 584–590 (2019). [CrossRef] [PubMed] [Google Scholar]
  9. Kang. X.Y, Liu. J.L, Yang. X.Q, Cui. J.J, Zhao. L.J, Wen. Q.L, Fu. M.L, Zhang. J.H, He. P.M. The complete mitochondrial genome of a green macroalgae species: Ulva meridionalis (Ulvales: Ulvaceae). Mitochondrial DNA Part B. 5(1): p. 760–761 (2020). [CrossRef] [Google Scholar]
  10. Xiao. J., Wang. Z.L, Song. H.J, Fan. S.L, Yuan. C, Fu. M.Z, Miao. X.X, Zhang. X.L, Su. R.G, Hu. C.M. An anomalous bi-macroalgal bloom caused by Ulva and Sargassum seaweeds during spring to summer of 2017 in the western Yellow Sea, China. Harmful Algae. 93: p. 101760 (2020). [Google Scholar]
  11. Liu. D.Y, Keesing. J.K, Xing. Q.G, Shi. P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull. 58: p. 888–895 (2009). [CrossRef] [PubMed] [Google Scholar]
  12. Hu. C.M, Li. D.Q, Chen. C.S, Ge. J.Z, Muller-Karger. F.E, Liu. J.P, Yu. F, He. M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophy Res-Oceans. 115: p. C05017 (2010). [Google Scholar]
  13. Shan. J.Z, Li. J.M, Xu. Z.H. Estimating ecological damage caused by green tides in the Yellow Sea: A choice experiment approach incorporating extended theory of planned behavior. Ocean Coastal Manage. 181: p. 104901 (2019). [CrossRef] [Google Scholar]
  14. Wang. H, Wang. G.C, Gu. W.H. Macroalgal blooms caused by marine nutrient changes resulting from human activities. J Appl Ecol. 57(4): p. 766–776 (2020). [Google Scholar]
  15. Zhao. X.H, Yang. X.Q, Zhang. J.H, Wen. Q.L, He. P.M. Karyological observations of Ulva linza chromosomes. Journal of Oceanology and Limnology. Early Online, DOI:10.1007/s00343-020-9105-x (2020). [Google Scholar]
  16. Hu. S, Yang. H, Zhang. J.H, Chen. C.S, He. P.M. Small-scale early aggregation of green tide macroalgae observed on the Subei Bank, Yellow Sea. Mar Pollut Bull. 81(1): p. 166–173 (2014). [CrossRef] [PubMed] [Google Scholar]
  17. Han. W, Chen. L.P, Zhang. J.H, Tian. X.L, Hua. L, He. Q, Huo. Y.Z, Yu. K.F, Shi. D.J, Ma. J.H, He. P.M. Seasonal variation of dominant free-floating and attached Ulva species in Rudong coastal area, China. Harmful Algae. 28: p. 46–54 (2013). [Google Scholar]
  18. Wang. S.Y, Huo. Y.Z, Zhang. J.H, Cui. J.J, Wang. Y, Yang. L.L, Zhao. Q.Y, Lu. Y.W, Yu. K.F, He. P.M. Variations of dominant free-floating Ulva species in the source area for the worlds largest macroalgal blooms, China: Differences of ecological tolerance. Harmful Algae. 74: p. 58–66 (2018). [Google Scholar]
  19. Zhang. J.H, Huo. Y.Z, Wu. H.L, Yu. K.F, Kim. J.K, Yarish. C, Qin. Y.T, Liu. C.C, Xu. R, He. P.M. The origin of the Ulva macroalgal blooms in the Yellow Sea in 2013. Mar Pollut Bull. 89(1–2): p. 276–283 (2014). [CrossRef] [PubMed] [Google Scholar]
  20. Cai. C.E, Wang. L.K, Jiang. T, Zhou. L.J, He. P.M, Jiao. B.H. The complete mitochondrial genomes of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta). Conserv Genet Resour. 10(3): p. 415–418 (2018). [Google Scholar]
  21. Pombert. J.F, Otis. C, Lemieux. C, Turmel. M. The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvoplayceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. Mol Biol Evol. 21(5): p. 922–935 (2004). [CrossRef] [PubMed] [Google Scholar]
  22. Kumar. S, Stecher. G, Tamura. K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7): p. 1870–1874 (2016). [CrossRef] [PubMed] [Google Scholar]
  23. Huo. Y.Z, Han. H.B, Shi. H.H, Wu. H.L, Zhang. J.H, Yu. K.F, Xu. R, Liu. C.C, Zhang. Z.L, Liu. K.F, He. P.M, Ding. D.W. Changes to the biomass and species composition of Ulva sp on Porphyra aquaculture rafts, along the coastal radial sandbank of the Southern Yellow Sea. Mar Pollut Bull. 93(1– 2): p. 210–216 (2015). [CrossRef] [PubMed] [Google Scholar]
  24. Zhang. J.H, Zhao. P, Huo. Y.Z, Yu. K.F, He. P.M. The fast expansion of Pyropia aquaculture in “Sansha” regions should be mainly responsible for the Ulva blooms in Yellow Sea. Estuar Coast Shelf Sci. 189: p. 58–65 (2017). [Google Scholar]
  25. Zhang. J.H, Shi. J.T, Gao. S, Huo. Y.Z, Cui. J.J, Shen. H, Liu. G.Y, He. P.M. Annual patterns of macroalgal blooms in the Yellow Sea during 2007-2017. PLOS One. 14(1): p. e0210460 (2019). [Google Scholar]
  26. Liu. J.L, Yang. X.Q, Cui. J.J, Zhuang. M.M, Zhao. L.J, Li. J.Y, Liu. Y.K, Wen. Q.L, Fu. M.L, Zhao. S, Zhang. J.H, He. P.M. Complete chloroplast genome of Ulva meridionalis (Ulvales: Ulvaceae): an extremely fast-growing green macroalgae. Mitochondrial DNA Part B-Resources. 5(2): p. 1390–1392 (2020). [CrossRef] [Google Scholar]
  27. Liu. J.L, Yang. X.Q, Li. J.Y, Wen. Q.L, Liu. W, Song. W.P, He. P.M, Zhang. J.H. Research progress on settled mature Ulva prolifera during the outbreak of green tide in the Yellow Sea. Environmental Pollution & Control. 42(5): p. 614–618 (2020). [Google Scholar]
  28. Shi. J.T, Zhang. J.H, Cui. J.J, Zhao. X.H, Kang. X.Y, Liu. J.L, Wen. Q.L, Yang. X.Q, He. P.M. Artificial hybridization and cross-breeding of Ulva. Journal of Shanghai Ocean University. 28(5): p. 755–764 (2019). [Google Scholar]
  29. Zhuang. M.M, Liu. J.L, Ding. X.W, He. J.Z, Zhao. S, Wu. L.J, Gao. S, Zhao. C.Y, Liu. D.Y, Zhang. J.H, He. P.M. Sargassum blooms in the East China Sea and Yellow Sea: Formation and management. Marine Pollution Bulletin. p. 111845 (2020). [CrossRef] [PubMed] [Google Scholar]
  30. Liu. J.L, Xia. J, Zhao. L.J, Gu. K, Kang. X.Y, Ding. X.W, Zhao. X.H, Zhuang. M.M, Zhang. J.H, He. P.M. Species identification of epizoans from Ulva Lactuca in Zhoushan sea area by using the DNA barcode technology. Marine Environmental Science. 39(6): p. 874–879+886 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.