Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 04039
Number of page(s) 6
Section MEA2020-Mechanical Engineering and Automation
Published online 27 January 2021
  1. G. P. Sun , X. Y. Hao, Z. J. Zhang, et al. Cooperative target recognition method based on multi feature judgment. JSS, 2377-2383, 30, 6(2018) [Google Scholar]
  2. D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 91-110, 60, 2(2004) [CrossRef] [Google Scholar]
  3. L. Juan, O. Gwun. A comparison of sift, pca-sift and surf. IJIP, 143-152, 3, 4(2009) [Google Scholar]
  4. N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. IEEE, 886-893, 1(2005) [Google Scholar]
  5. Q. Zhu, M. C. Yeh, K. T. Cheng, et al. Fast human detection using a cascade of histograms of oriented gradients. IEEE, 1491-1498, 2(2006) [Google Scholar]
  6. P. Felzenszwalb, D. McAllester, D. Ramanan. A discriminatively trained, multiscale, deformable part model. IEEE, 1-8(2008) [Google Scholar]
  7. Y. Freund, R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. JCSS,119-139,55, 1(1997) [Google Scholar]
  8. J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. NPL, 293-300, 9, 3(1999) [Google Scholar]
  9. B. X. Xu, J. Gong, Z. X. Sun. A review of target detection models based on convolutional neural networks. CTD, 1-8, 11(2019) [Google Scholar]
  10. A. Neubeck, L. Van. Efficient non-maximum suppression. IEEE, 850-855, 3(2006) [Google Scholar]
  11. A.Krizhevsky, I. Sutskever, G. E. Hinton . Imagenet classification with deep convolutional neural networks. ACM, 84-90, 60, 6(2017) [CrossRef] [Google Scholar]
  12. D. Dan. A review of target detection based on deep learning. ISTT, 1-2, 27, 13(2019) [Google Scholar]
  13. R. GIRSHICK, J. DONAHUE, T. DARRELL, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE, 580-587, (2014) [Google Scholar]
  14. J. R. UIJLING, K. VAN. VAN, T. GEVERS, et al. Selective search for object recognition. IJCV, 154-171, 104, 2(2013) [CrossRef] [Google Scholar]
  15. K. He, X. Zhang, S. Ren, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE, 1904-1916, 37, 9(2015) [Google Scholar]
  16. R. Girshick. Fast R-CNN.IEEE, 1440-1448 (2015) [Google Scholar]
  17. S Ren, K. He, R Girshick, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE, 1137-1149, 39, 6(2016) [Google Scholar]
  18. J. Dai, Y. Li, K. H, et al. R-fcn: Object detection via region-based fully convolutional networks. NIPS, 379-387(2016). [Google Scholar]
  19. K. He, G. Gkioxari, P. Dollár, et al. Mask R-CNN. IEEE, 2961-2969(2017) [Google Scholar]
  20. T. Y. Lin, P. Dollár, R. Girshick, et al. Feature pyramid networks for object detection. IEEE, 2117-2125(2017) [Google Scholar]
  21. Y. Li, Y. Chen, N. Wang, et al. Scale-aware trident networks for object detection.IEEE, 6054-6063(2019) [Google Scholar]
  22. J. Cao, H. Cholakkal, R. M. Anwer, et al. D2Det: Towards High Quality Object Detection and Instance Segmentation. IEEE/CVF, 11485-11494(2020) [Google Scholar]
  23. J. Redmon, S. Divvala, R. Girshick, et al. You only look once: Unified, real-time object detection. IEEE, 779-788(2016) [Google Scholar]
  24. J. Redmon, A. Farhadi. YOLO9000: better, faster, stronger. IEEE. 7263-7271(2017) [Google Scholar]
  25. S. Ioffe, C Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv, 1502.03167(2015) [Google Scholar]
  26. N. Srivastava, G. Hinton, A. Krizhevsky, et al. Dropout: a simple way to prevent neural networks from overfitting, The journal of machine learning research, 1929-1958.15 (2014) [Google Scholar]
  27. J. Redmon, A. Farhadi. Yolov3: An incremental improvement. ArXiv.1804.02767(2018) [Google Scholar]
  28. J. Choi, D. Chun, H. Kim, et al.Gaussian YOLOv3 : an accurate and fast object detector using localization uncertainty for autonomous driving.ICCV. 502-511(2019 ) [Google Scholar]
  29. A. Bochkovskiy, C. Y. Wang, H. Y. MLiao. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv.10934(2020) [Google Scholar]
  30. W. Liu, D. Anguelov , D. Erhan , et al. Ssd: Single shot multibox detector. Cham, 21-37(2016) [Google Scholar]
  31. C. Y. Fu, W. Liu, A. Ranga, et al. Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659.(2017) [Google Scholar]
  32. Z. Shen , Z. Liu, J. Li, et al.DSOD:learning deeply super-vised object detectors from scratch//IEEE Interna-tional Conference on Computer Vision,1937-1945(2017) [Google Scholar]
  33. Z. Li, F. Zhou. FSSD: feature fusion single shot multibox detector.arXivpreprint arXiv:1712.00960(2017) [Google Scholar]
  34. T .Y. Lin , P. Goyal, R. Girshick, et al. Focal loss for dense object detection. IEEE . 2980-2988.(2017) [Google Scholar]
  35. M. Tan, R. Pang, Q .V.Le . Efficientdet: Scalable and efficient object detection. IEEE/CVF. 10781-10790(2020) [Google Scholar]
  36. M. Tan, Q. V. Le . Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946(2019) [Google Scholar]
  37. Z. Dong, G. Li, Y. Liao, et al. Centripetalnet: Pursuing high-quality keypoint pairs for object detection. IEEE/CVF. 10519-10528( 2020) [Google Scholar]
  38. G. Chen, W. Choi, X. Yu, et al. Learning efficient object detection models with knowledge distillation. ANIPS. 742-751(2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.