Open Access
Issue
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00086
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123400086
Published online 02 February 2021
  1. U.S. Energy Information Administration, “EIA.” [Online]. Available: https://www.eia.gov/ [Google Scholar]
  2. C. Vezzoli et al., “Designing Sustainable Energy for All. Sustainable Product-Service System Design Applied to Distributed Renewable Energy,” in Designing Sustainable Energy for All, 1st ed., Springer Nature Switzerland, 2018, p. 230 [Google Scholar]
  3. L. Mehigan, J.P. Deane, B.P.Ó. Gallachóir, and V. Bertsch, “A review of the role of distributed generation (DG) in future electricity systems,” Energy, Vol. 163, pp. 822-836, 2018 [CrossRef] [Google Scholar]
  4. Q. Volker, Rethinking Energy: Renewable Energy and Climate Change, 1st ed. Berlin, Germany: IEEE PRESS, 2010 [Google Scholar]
  5. A. Tarraq, F. Elmariami, and T. Haidi, “Distributed Renewable Energy Generation: A state-of-art of different planning methods,” in Doctoral Days in Engineering Sciences, 2nd edition, Casablanca, Morocco, 2019, no. June [Google Scholar]
  6. W.L. Theo, J.S. Lim, W.S. Ho, H. Hashim, and C.T. Lee, “Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods,” Renew. Sustain. Energy Rev., Vol. 67, pp. 531-573, 2016 [Google Scholar]
  7. A. Rezaee Jordehi, “Allocation of distributed generation units in electric power systems: A review,” Renew. Sustain. Energy Rev., Vol. 56, pp. 893-905, 2016 [CrossRef] [Google Scholar]
  8. A. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques,” Appl. Energy, Vol. 210, no. July 2017, pp. 44-59, 2017 [Google Scholar]
  9. B. Singh and J. Sharma, “A review on distributed generation planning,” Renew. Sustain. Energy Rev., Vol. 76, no. March, pp. 529-544, 2017 [CrossRef] [Google Scholar]
  10. A. Bayat and A. Bagheri, “Optimal active and reactive power allocation in distribution networks using a novel heuristic approach,” Appl. Energy, Vol. 233–234, no. October 2018, pp. 71-85, 2019 [Google Scholar]
  11. H. M. H. Farh, A.M. Al-Shaalan, A.M. Eltamaly, and A.A. Al-Shamma’A, “A Novel Crow Search Algorithm Auto-Drive PSO for Optimal Allocation and Sizing of Renewable Distributed Generation,” IEEE Access, Vol. 8, no. January, pp. 27807-27820, 2020 [Google Scholar]
  12. J.H. Cho, Y. Wang, I.R. Chen, K.S. Chan, and A. Swami, “A Survey on Modeling and Optimizing Multi-Objective Systems,” IEEE Commun. Surv. Tutorials, Vol. 19, no. 3, pp. 1867-1901, 2017 [CrossRef] [Google Scholar]
  13. S.E. De Leon-Aldaco, H. Calleja, and J. Aguayo Alquicira, “Metaheuristic Optimization Methods Applied to Power Converters: A Review,” IEEE Trans. Power Electron., Vol. 30, no. 12, pp. 6791-6803, 2015 [Google Scholar]
  14. Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, and N.A. Al-Emadi, “Review of optimization techniques applied for the integration of distributed generation from renewable energy sources,” Renew. Energy, Vol. 113, no. November, pp. 266-280, 2017 [Google Scholar]
  15. R. H. A. Zubo, G. Mokryani, H.S. Rajamani, J. Aghaei, T. Niknam, and P. Pillai, “Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review,” Renew. Sustain. Energy Rev., Vol. 72, no. May 2016, pp. 1177-1198, 2017 [CrossRef] [Google Scholar]
  16. M. Pesaran H.A, P.D. Huy, and V.K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., Vol. 75, no. October, pp. 293-312, 2016 [Google Scholar]
  17. T. Ackermann, A. Göran, and L. Söder, “Distributed generation- a definition .pdf,” Electr. Power Syst. Res., Vol. 57, pp. 195-204, 2001 [CrossRef] [Google Scholar]
  18. W. El-Khattam and M. M. A. Salama, “Distributed generation technologies, definitions and benefits,” Electr. Power Syst. Res., Vol. 71, no. 2, pp. 119-128, 2004 [CrossRef] [Google Scholar]
  19. T. Abdel-Galil and A. Abu-Elanien, “Protection coordination planning with distributed generation,” Varennes, 2007 [Google Scholar]
  20. D.Q. Hung, N. Mithulananthan, and R.C. Bansal, “Analytical expressions for DG allocation in primary distribution networks,” IEEE Trans. Energy Convers., Vol. 25, no. 3, pp. 814-820, 2010 [CrossRef] [Google Scholar]
  21. K.S. Sambaiah, “A Review on Optimal Allocation and Sizing Techniques for DG in Distribution Systems,” Int. J. Renew. ENERGY Res., Vol. 8, no. 3, 2018 [Google Scholar]
  22. A.K. Bohre, G. Agnihotri, and M. Dubey, “Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system,” IET Gener. Transm. Distrib., Vol. 10, no. 11, pp. 2606-2621, 2016 [CrossRef] [Google Scholar]
  23. M. Khalid, U. Akram, and S. Shafiq, “Optimal planning of multiple distributed generating units and storage in active distribution networks,” IEEE Access, Vol. 6, no. September, pp. 55234-55244, 2018 [Google Scholar]
  24. K. Muthukumar and S. Jayalalitha, “Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique,” Int. J. Electr. Power Energy Syst., Vol. 78, pp. 299-319, 2016 [CrossRef] [Google Scholar]
  25. A.R. Abul’Wafa, “Ant-lion optimizer-based multi-objective optimal simultaneous allocation of distributed generations and synchronous condensers in distribution networks,” Int. Trans. Electr. Energy Syst., no. September, pp. 1-14, 2018 [Google Scholar]
  26. Y. Thangaraj and R. Kuppan, “Multi-objective simultaneous placement of DG and DSTATCOM using novel lightning search algorithm,” J. Appl. Res. Technol., Vol. 15, no. 5, pp. 477-491, 2017 [CrossRef] [Google Scholar]
  27. C. A. C. Coello, “An Updated Survey of GA-Based Multiobjective Optimization Techniques,” ACM Comput. Surv., Vol. 32, no. 2, pp. 109-143, 2000 [Google Scholar]
  28. Z. Ullah, S. Wang, and J. Radosavljević, “A Novel Method Based on PPSO for Optimal Placement and Sizing of Distributed Generation,” IEEJ Trans. Electr. Electron. Eng., Vol. 14, no. 12, pp. 1754-1763, 2019 [CrossRef] [Google Scholar]
  29. M. C. V. Suresh and J.B. Edward, “A hybrid algorithm based optimal placement of DG units for loss reduction in the distribution system,” Appl. Soft Comput. J., Vol. 91, p. 106191, 2020 [CrossRef] [Google Scholar]
  30. Y. Ding, L. Chen, and K. Hao, Bio-inspired optimization algorithms, Vol. 118. 2018 [Google Scholar]
  31. I.A. Quadri, S. Bhowmick, and D. Joshi, “A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems,” Appl. Energy, Vol. 211, no. November 2017, pp. 1245-1260, 2018 [Google Scholar]
  32. K.H. Truong, P. Nallagownden, I. Elamvazuthi, and D.N. Vo, “A Quasi-Oppositional-Chaotic Symbiotic Organisms Search algorithm for optimal allocation of DG in radial distribution networks,” Appl. Soft Comput. J., Vol. 88, p. 106067, 2020 [CrossRef] [Google Scholar]
  33. A. Rezaee.Jordehi, “DG allocation and reconfiguration in distribution systems by metaheuristic optimisation algorithms: A comparative analysis,” in Proceedings - 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2018, 2018, pp. 1-6 [Google Scholar]
  34. R. Shi, C. Cui, K. Su, and Z. Zain, “Comparison study of two meta-heuristic algorithms with their applications to distributed generation planning,” Energy Procedia, Vol. 12, pp. 245-252, 2011 [Google Scholar]
  35. L. Lopez, J. Doria-Garcia, C. Pimienta, and A. Arango-Manrique, “Distributed Generation Allocation and Sizing: A Comparison of Metaheuristics Techniques,” in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, pp. 1-6 [Google Scholar]
  36. M.J. Hadidian-Moghaddam, S. Arabi-Nowdeh, M. Bigdeli, and D. Azizian, “A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique,” Ain Shams Eng. J., no. March, 2016 [Google Scholar]
  37. Z. Moravej and A. Akhlaghi, “A novel approach based on cuckoo search for DG allocation in distribution network,” Int. J. Electr. Power Energy Syst., Vol. 44, no. 1, pp. 672-679, 2013 [CrossRef] [Google Scholar]
  38. A. Sobieh, M. Mandour, E.M. Saied, and M.M. Salama, “Optimal Number Size and Location of Distributed Generation Units in Radial Distribution Systems Using Grey Wolf Optimizer,” Int. Electr. Eng. J., Vol. 7, no. 9, pp. 2367-2376, 2017 [Google Scholar]
  39. H. HassanzadehFard and A. Jalilian, “Optimal sizing and location of renewable energy based DG units in distribution systems considering load growth,” Int. J. Electr. Power Energy Syst., Vol. 101, no. February, pp. 356-370, 2018 [CrossRef] [Google Scholar]
  40. P.D. Huy, V.K. Ramachandaramurthy, J.Y. Yong, K.M. Tan, and J.B. Ekanayake, “Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage,” Energy, Vol. 195, p. 117011, 2020 [CrossRef] [Google Scholar]
  41. B. Poornazaryan, P. Karimyan, G.B. Gharehpetian, and M. Abedi, “Optimal allocation and sizing of DG units considering voltage stability, losses and load variations,” Int. J. Electr. Power Energy Syst., Vol. 79, pp. 42-52, 2016 [CrossRef] [Google Scholar]
  42. S. Sannigrahi and P. Acharjee, “Maximization of system benefits with the optimal placement of DG and DSTATCOM considering load variations,” Procedia Comput. Sci., Vol. 143, pp. 694-701, 2018 [Google Scholar]
  43. E.S. Ali, S.M. Abd Elazim, and A.Y. Abdelaziz, “Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations,” Renew. Energy, Vol. 101, pp. 1311-1324, 2017 [Google Scholar]
  44. T.S. Tawfeek, A.H. Ahmed, and S. Hasan, “Analytical and particle swarm optimization algorithms for optimal allocation of four different distributed generation types in radial distribution networks,” Energy Procedia, Vol. 153, pp. 86-94, 2018 [Google Scholar]
  45. S.S. Tanwar and D.K. Khatod, “Techno-economic and environmental approach for optimal placement and sizing of renewable DGs in distribution system,” Energy, Vol. 127, pp. 52-67, 2017 [CrossRef] [Google Scholar]
  46. S. Saha and V. Mukherjee, “A novel multi-objective modified symbiotic organisms search algorithm for optimal allocation of distributed generation in radial distribution system,” Neural Comput. Appl., Vol. 6, 2020 [Google Scholar]
  47. S. Roy Ghatak, S. Sannigrahi, and P. Acharjee, “Multi-Objective Approach for Strategic Incorporation of Solar Energy Source, Battery Storage System, and DSTATCOM in a Smart Grid Environment,” IEEE Syst. J., Vol. 2, pp. 1-12, 2018 [Google Scholar]
  48. A. Eid, “Allocation of distributed generations in radial distribution systems using adaptive PSO and modified GSA multi-objective optimizations,” Alexandria Eng. J., no. September, 2020 [Google Scholar]
  49. A. Tzanetos and G. Dounias, “Nature inspired optimization algorithms or simply variations of metaheuristics?,” Artif. Intell. Rev., no. 0123456789, 2020 [Google Scholar]
  50. D.H. Wolpert and W.G. Macready, “No Free Lunch Theorems for Optimization,” IEEE Trans. Evol. Comput., Vol. 1, no. 1, pp. 67-82, 1997 [Google Scholar]
  51. K.S. Sambaiah, “A Review on Optimal Allocation and Sizing Techniques for DG in Distribution Systems,” no. October, 2018 [Google Scholar]
  52. S.Q. Salih and A.A. Alsewari, “A new algorithm for normal and large-scale optimization problems : Nomadic People Optimizer,” Neural Comput. Appl., Vol. 1, 2019 [Google Scholar]
  53. C. Blum, J. Puchinger, G.R. Raidl, and A. Roli, “Hybrid metaheuristics in combinatorial optimization: A survey,” Appl. Soft Comput. J., Vol. 11, no. 6, pp. 4135-4151, 2011 [CrossRef] [Google Scholar]
  54. N.D. Mirza Šarić1, Jasna Hivziefendić, “Distributed Generation Allocation: Objectives, Constraints and Methods,” in Advanced Technologies, Systems, and Applications III, 3th ed., Vol. 1, S. Avdaković, Ed. Springer Nature Switzerland, 2019, pp. 132-149 [Google Scholar]
  55. R. Khokhar, S. Lalwani, and M. Lalwani, “A Simulation Study of Parallel Particle Swarm Optimization Algorithm for Proportional Integral Derivative Controller Tuning,” India Int. Conf. Power Electron. IICPE, Vol. 2018-Decem, pp. 1-4, 2018 [Google Scholar]
  56. S. Roy Ghatak, S. Sannigrahi, and P. Acharjee, “Comparative performance analysis of DG and DSTATCOM using improved pso based on success rate for deregulated environment,” IEEE Syst. J., Vol. 12, no. 3, pp. 2791-2802, 2017 [Google Scholar]
  57. R. Payasi, A. Singh, and D. Singh, “Review of distributed generation planning: objectives, constraints, and algorithms,” Int. J. Eng. Sci. Technol., Vol. 3, no. 3, 2011 [CrossRef] [Google Scholar]
  58. A.S. Dagoumas and N.E. Koltsaklis, “Review of models for integrating renewable energy in the generation expansion planning,” Appl. Energy, Vol. 242, no. December 2018, pp. 1573-1587, 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.