Open Access
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00091
Number of page(s) 7
Published online 02 February 2021
  1. Gutiérrez-Urueta G, Rodríguez P, Ziegler F, Lecuona A, Rodríguez-Hidalgo MC. Extension of the characteristic equation to absorption chillers with adiabatic absorbers. Int J Refrig 2012; 35: 709-18 [Google Scholar]
  2. Karamangil MI, Coskun S, Kaynakli O, Yamankaradeniz N. A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives. Renewable and Sustainable Energy Reviews 2010; 14:1969-78 [Google Scholar]
  3. Marc O, Lucas F, Sinama F, Monceyron E. Review experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate. Energy and Buildings 2010; 42:774-82 [Google Scholar]
  4. Gomri R. Investigation of the potential of application of single effect and multiple effect absorption cooling systems. Energy Convers Manage 2010; 51(8):1629-36 [Google Scholar]
  5. Hamed M, Fellah A, Ben Brahim A. Optimization of a solar driven absorption refrigerator in the transient regime. Applied Energy 2012; 92:714-24 [Google Scholar]
  6. A. Iranmanesh et M.A. Mehrabian, « Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses », Energy Build., Vol. 60, p. 47-59, mai 2013 [Google Scholar]
  7. R. Touaibi, E.E. Vasilescu, M. Feidt, A. Kheiri, M.T. Abbes, et B. Khelidj, « à simple effet utilisant le couple Eau – Bromure de lithium », p. 6 [Google Scholar]
  8. M. Balghouthi, M.H. Chahbani, A. Guizani “Feasibility of solar absorption air conditioning in Tunisia” Building and environment 43, pp.1459-1470, 2008 [Google Scholar]
  9. Ketfi O., Merzouk M., Merzouk N.K., & El Metennani S. (2015, December). Modeling and simulation of a single stage solar absorption cooling machine under Algerian climate. In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-5). IEEE [Google Scholar]
  10. Yazaki, Absorption cooling machine WFC-SC20, YAZAKI Europe Limited 2007 [Google Scholar]
  11. Ghatos S , Taha-Janan M, Mehdari A (2019, novembre). Modelling and Simulation of a Single Effect Solar Absorption Cooling System H2O-LiBr. In 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) IEEE [Google Scholar]
  12. S. Aprhornratana et I.W. Eames, « Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method », Int. J. Refrig., Vol. 18, no 4, p. 244-252, mai 1995 [Google Scholar]
  13. Muhsin Kilic, Omer Kaynakli.Theoretical Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. July 2004 [Google Scholar]
  14. Lansing F.L. "Computer modeling of a single stage lithium bromide/water absorption refrigeration unit." Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Deep Space Network Progress Report 42 (1976): 247-257 [Google Scholar]
  15. J. Patek, J. Klomfar. A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. International Journal of Refrigeration 29;566-578, (2006) [Google Scholar]
  16. Lee RJ, DiGuilio RM, Jeter SM, Teja AS. Properties of lithium bromide–water solutions at high temperatures and concentration. II. Density and viscosity. ASHRAE Trans. 96(Pt. 1):709-28, (1990) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.