Open Access
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00097
Number of page(s) 5
Published online 02 February 2021
  1. P. Shrivastava, T.K. Soon, M. Y. I. B Idris, et S. Mekhilef, « Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries », Renewable and Sustainable Energy Reviews, Vol. 113, p. 109233, oct. 2019, doi: 10.1016/j.rser.2019.06.040 [CrossRef] [Google Scholar]
  2. Y. Tian, R. Lai, X. Li, L. Xiang, et J. Tian, « A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter », Applied Energy, Vol. 265, p. 114789, mai 2020, doi: 10.1016/j.apenergy.2020.114789 [Google Scholar]
  3. X. Li, Z. Wang, et L. Zhang, « Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles », Energy, Vol. 174, p. 33 44, mai 2019, doi: 10.1016/ [CrossRef] [Google Scholar]
  4. J. Peng, J. Luo, H. He, et B. Lu, « An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries », Applied Energy, Vol. 253, p. 113520, nov. 2019, doi: 10.1016/j.apenergy.2019.113520 [Google Scholar]
  5. J. Linghu, L. Kang, M. Liu, X. Luo, Y. Feng, et C. Lu, « Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter », Energy, Vol. 189, p. 116204, déc. 2019, doi: 10.1016/ [CrossRef] [Google Scholar]
  6. R. Zhang et al., « A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature », Energies, Vol. 11, no 9, p. 2408, sept. 2018, doi: 10.3390/en11092408 [Google Scholar]
  7. « Battery Management Systems, Volume II: Equivalent-Circuit Methods - Artech books ». (consulté le nov. 25, 2020) [Google Scholar]
  8. J. Lv, B. Jiang, X. Wang, Y. Liu, et Y. Fu, « Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm », Electronics, Vol. 9, no 9, p. 1425, sept. 2020, doi: 10.3390/electronics9091425 [Google Scholar]
  9. H. Yang, X. Sun, Y. An, X. Zhang, T. Wei, et Y. Ma, « Online parameters identification and state of charge estimation for lithium-ion capacitor based on improved Cubature Kalman filter », Journal of Energy Storage, Vol. 24, p. 100810, août 2019, doi: 10.1016/j.est.2019.100810 [Google Scholar]
  10. M. Ali et al., « An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method », Energies, Vol. 11, no 11, p. 2940, oct. 2018, doi: 10.3390/en11112940 [Google Scholar]
  11. D. Sun et al., « State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator », Energy, Vol. 214, p. 119025, janv. 2021, doi: 10.1016/ [CrossRef] [Google Scholar]
  12. R. Ahmed, M. El Sayed, I. Arasaratnam, Jimi Tjong, et S. Habibi, « Reduced-Order Electrochemical Model Parameters Identification and SOC Estimation for Healthy and Aged Li-Ion Batteries Part I: Parameterization Model Development for Healthy Batteries », IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, no 3, p. 659 677, sept. 2014, doi: 10.1109/JESTPE.2014.2331059 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.