Open Access
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00102
Number of page(s) 6
Published online 02 February 2021
  1. M. Aziz, N. Tab, A. Karim, H. Mekhfi et al. Relaxant effect of aqueous extract of Cistus ladaniferus on rodent intestinal contractions. Fitoterapia. 77, 425-428(2006) [Google Scholar]
  2. A. El Hamsas El Youbi, L. El Mansouri, S. Boukhira, A. Daoudi, D. Bousta. In Vivo Anti-Inflammatory and Analgaesic Effects of Aqueous Extract of Cistus ladanifer L. From Morocco. Am J Ther. 23(6) : e1554-e1559 (2016) [Google Scholar]
  3. N. El Menyiy, N. Al-Waili, R. El-Haskoury, M. Bakour. Potential effect of Silybum marianum L. and Cistus ladaniferus L. extracts on urine volume, creatinine clearance and renal function. Asian Pacific Journal of Tropical Medicine. 11. 393 (2018) [Google Scholar]
  4. A.I. DeAndres, M.P. GómezSerranillos, I. Iglesias, A.M. Villar. Effects of extract of Cistus populifolius L. on the central nervous system Phytother. Res., 13, pp. 575-579 (1999) [Google Scholar]
  5. M. Ark, O. Üstün, E. Yeşilada. Analgaesic activity of Cistus laurifolius in mice.Pharm. Biol., 42, pp. 176-178 (2004) [Google Scholar]
  6. E. Yeşilada, I. Gürbüz, E. ErgunEffects of Cistus laurifolius L. flowers on gastric and duodenal lesions. J. Ethnopharmacol., 55 pp. 201-211 (1997) [Google Scholar]
  7. SM. Raquibul, MM. Hossain, R. Aktar, et al. Analgaesic activity of the different fractions of the aerial parts of commenila benghalensis Linn. Int J Pharmacol. 6 :63-67 (2010) [Google Scholar]
  8. D. Le Bars, M. Gozariu, SW. Cadden. Animal models of nociception. Pharmacol Rev. 53(4) :597-652 (2001) [Google Scholar]
  9. B. Aouey, AM. Samet, H. Fetoui, MSJ. Simmonds, M. Bouaziz. Anti-oxidant, anti-inflammatory, analgaesic and antipyretic activities of grapevine leaf extract (Vitis vinifera) in mice and identification of its active constituents by LC-MS/MS analyses. Biomed Pharmacother. 84 :1088-1098 (2016) [Google Scholar]
  10. M. Belmokhtar, NE. Bouanani, A. Ziyyat, H. Mekhfi, M. Bnouham, M. Aziz, et al. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem Biophys Res Commun. 389(1) : 145-9 (2009) [Google Scholar]
  11. JA. Avbunudiogba, CA. Alalor, PF. Builders, S. Odozie. Development and evaluation of liquid oral phytoformulation of Phyllanthus amarus. Journal of Pharmacy Research, Volume 6, Issue 9, Pages 908-912, ISSN 0974-6943 (2013) [Google Scholar]
  12. S. Jones-Bolin. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. Appendix 4 : Appendix 4B (2012) [Google Scholar]
  13. OECD, 2001. OECD Guidelines for Testing of Chemicals: Acute Oral Toxicity – Fixed Dose Procedure. Test No. 420, OECD, Paris [Google Scholar]
  14. OECD (2001) Guidance Document on Acute Oral Toxicity Testing. OECD Publishing [Google Scholar]
  15. Walum E. Acute oral toxicity. Environ Health Perspect. 1998; 106(Suppl 2): 497-503 [Google Scholar]
  16. R. Koster, M. Anderson, E.J. De Beer. Acetic acid for analgesic screening. Federation Proceedings, 18, 412-418 (1959) [Google Scholar]
  17. M. Shibata, T. Ohkubo, H. Takahashi, R. Inoki et al. Modified formalin test : characteristic biphasic pain response Pain, Elsevier. 38 347-352 (1989) [Google Scholar]
  18. S. Hunskaar, K. Hole, The formalin test in mice: dissociation between inflammatory and non-inflammatory pain, Pain 1. 103-114 (1987) [Google Scholar]
  19. CD. Louis and Wallace, HA. Wallace. In principles and method of toxicology, 4th edition, Taylor and Francis, Philadelphia pp. 871-873 (2001) [Google Scholar]
  20. M.N. Ghosh, Toxicity Studies. In: Fundamentals of Experimental Pharmacology, Ghosh, M.N. (Ed.). 2nd Edn., Scientific Book Agency, Calcutta, India, pp. 153-158 (1984) [Google Scholar]
  21. M. Aziz, N. Tab, A. Karim, et al., Relaxant effect of aqueous extract of Cistus ladaniferus on rodent intestinal contractions ; Fitoterapia 77 ; 425-428.(2006). doi:10.1016/j.fitote.2006.05.015 [Google Scholar]
  22. M. El Kabbaoui, A. Chda, J. El-Akhal, et al., Acute and sub-chronic toxicity studies of the aqueous extract from leaves of Cistus ladaniferus L. in mice and rats. Journal of Ethnopharmacology 209 ; 147-156(2017). 10.1016/j.jep.2017.07.029 [Google Scholar]
  23. H. Blumberg, PS. Wolf, HB. Dayton. Use Of Writhing Test For Evaluating Analgaesic Activity Of Narcotic Antagonists. Proc Soc Exp Biol Med. 118 :763-766 (1965) [Google Scholar]
  24. D. Dubuisson, SG. Dennis. The formalin test : a quantitative study of the analgaesic effects of morphine, meperidine and brainstem stimulation in rats and cats. Pain. 4 :161-174 (1977) [Google Scholar]
  25. N. Chaves, JC. Escudero, C. Gutiérrez-Merino, Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol., 23, 579-603 (1997) [Google Scholar]
  26. N. Chaves, JL Ríos, C. Gutiérrez, JC. Escudero, J.M. Alías. Analysis of secreted flavonoids of Cistus ladanifer L. by high-performance liquid chromatographyparticle beam mass spectrometry. J. Chromatogr., 799, 111-115. A (1998) [Google Scholar]
  27. N. Chaves, T. Sosa, Escudero JC. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J Chem Ecol. 27 :623-631. (2001a) [Google Scholar]
  28. T. Sosa, N. Chaves, JC. Alías, et al. Inhibition of mouth skeletal muscle relaxation by flavonoids of Cistus ladanifer L. A plant defense mechanism against herbivores. J. Chem. Ecol., 30, 1087-1101 (2004) [Google Scholar]
  29. MC. Valares, DT. Sosa, GJC. Alías, LN. Chaves. Quantitative Variation of Flavonoids and Diterpenes in Leaves and Stems of Cistus ladanifer L. at Different Ages. Molecules. 21(3):275. (2016) [Google Scholar]
  30. M. Anjaneyulu, K. Chopra. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. 27(6) :1001-5 (2003) [Google Scholar]
  31. DA. Valério, SR. Georgetti, DA. Magro et al. Quercetin reduces inflammatory pain : inhibition of oxidative stress and cytokine production. J Nat Prod. 72(11) :1975-9 (2009) [Google Scholar]
  32. MM. Córdova, MF. Werner, MD. Silva, et al. Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neurosci Lett. 20; 495(3) :173-7(2011) [Google Scholar]
  33. Anseloni, HR. Weng, R. Terayama, et al., Age-dependency of analgesia elicited by intraoral sucrose in acute and persistent pain models. Pain. 97(1-2):93-103 ; May (2002). doi: 10.1016/s0304-3959(02)00010-6 [Google Scholar]
  34. FN. Segato, C. Castro-Souza, EN. Segato, et al., Sucrose ingestion causes opioid analgesia. Braz J Med Biol Res; 30: 981–984 (1997) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.