Open Access
Issue
E3S Web Conf.
Volume 324, 2021
Maritime Continent Fulcrum International Conference (MaCiFIC 2021)
Article Number 03010
Number of page(s) 7
Section Sustainable Maritime Resources
DOI https://doi.org/10.1051/e3sconf/202132403010
Published online 16 November 2021
  1. Arnol. D, Kasim. M, Irawati. N. 2019. Chaetomorpha crassa Density and Biomass are Attached to Kappaphycus alvarezii in Floating Net Mesh Networks in Lakeba Beach Waters Bau-Bau. Jurnal Manajemen Sumber Daya Perairan, 4 (2) : 145-154. [Google Scholar]
  2. Burel. T, Grall. J, Schaal. G, Duff. M. L, Gall. E. A. 2019. Wave height vs. elevation effect on macroalgal dominated shores: an intercommunity study. Journal of Applied Phycology : 1-12. ournal of Applied Phycology. doi.org/10.1007/s10811019-01989-1. [Google Scholar]
  3. Burt. J, Feary. D, Usseglio. P, Bauman. A, Sale. P. F. 2010. The Influence Of Wave Exposure On Coral Community Development On Man-Made Breakwater Reefs, With A Comparison To A Natural Reef. Bulletin Of Marine Science 86 (4) : 1-21. DOI: 10.5343/bms.2009.1013. [Google Scholar]
  4. Chang. S. E, Stone. J, Demes. K, Piscitelli. M. 2014. Consequences of oil spills: a review and framework for informing planning. Ecology and Society 19 (2) : 1-26. doi.org/10.5751/ES-06406190226. [CrossRef] [Google Scholar]
  5. Chung. I. K, Sondak. C. F. A, Beardall. J. 2017. The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology 52 (4) : 495–505. [CrossRef] [Google Scholar]
  6. Das. L, Salvi H., Brahmbhatt B., Vaghela N., Kamboj R. D. 2018. Biomass and percent cover of marine macro algae at five south-western intertidal areas of Gulf of Kachchh. Phykos 48 (1): 46-57. [Google Scholar]
  7. Denny. M, Gaylord. B. 2002. The mechanics of wave-swept algae. The Journal of Experimental Biology 205 : 1355–1362. doi.org/10.1080/09670262.2017.1359678 [CrossRef] [PubMed] [Google Scholar]
  8. Duarte. C. M, Jiaping. W, Xiao. X, Bruhn. A, Jensen. D. K. 2017. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. Frontiers in Marine Science 4 (100) : 1-8. Doi: 10.3389/fmars.2017.00100. [Google Scholar]
  9. Easton. E. E, Gaymer. C. F, Friedlander. A. M, Herlan. J. J. 2018. Effects of herbivores, wave exposure and depth on benthic coral communities of the Easter Island ecoregion. Marine and Freshwater Research 69 : 997–1006. [CrossRef] [Google Scholar]
  10. doi.org/10.1071/MF17064. [Google Scholar]
  11. Engelen. A. H, Aberg. P, Olsen. J. L, Stam. W. T, Breeman. A. M. 2005. Effects of wave exposure and depth on biomass, density and fertility of the fucoid seaweed Sargassum polyceratium (Phaeophyta, Sargassaceae). British Phycological Society 40 (2) : 149-158. [CrossRef] [Google Scholar]
  12. DOI: 10.1080/09670260500109210. [Google Scholar]
  13. Estrada. J, Bautista. N. S, Maribel. L, Sese. D. 2020. Morphological variation of two common sea grapes (Caulerpa lentillifera and Caulerpa racemosa) from selected regions in the Philippines. Biodiversitas 21 (5) : 1823-1832. DOI: 10.13057/biodiv/d210508. [CrossRef] [Google Scholar]
  14. Fegerburg. W. R, Towlw. J, Dawes. C. J, Boettger. A. 2012. Bioahdhesion in Caulerpa Mexicana (Chlorophyta); Rhizoid-substrate adhesion. Phycological Society of America 47 : 1-6. DOI: 10.1111/j.1529-8817.2012.01113.x. [Google Scholar]
  15. Gao. X, Choi. H. G, Park. S. K, Sun. Z. M, Nam. K. W. 2018. Assessment of optimal growth conditions for cultivation of the edible Caulerpa okamurae (Caulerpales, Chlorophyta) from Korea. Journal of Applied Phycology 31 (3) : 1-9. DOI: 10.1007/s10811-018-1691-z. [Google Scholar]
  16. Garcia. C. F, Cortes. J, Alvarado. J. J, Ruiz. J. N. 2012. Physical factors contributing to the benthic dominance of the alga Caulerpa sertularioides (Caulerpaceae, Chlorophyta) in the upwelling Bahía Culebra, north Pacific of Costa Rica. Revista de Biología Tropical 60 (2) : 93-107. [Google Scholar]
  17. Harley. C. D. G, Anderson. K. M, Demes. K. W, Jorve. J. P, Kordas. R. L, Coyle. T. A, Graham. M. H. 2012. Effects Of Climate Change On Global Seaweed Communities. J. Phycol 48 : 1064–1078. DOI: 10.1111/j.1529-8817.2012.01224.x. [CrossRef] [Google Scholar]
  18. Hay. M. E. 1997. The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16 : 67-76. DOI: 10.1007/s003380050243. [Google Scholar]
  19. Johsson. P. R, Granhag. L, Moschella. P. S, Aberg. P, Hawkins. S. J, Thompson. R. C. 2006. Interactions between Wave Action and Grazing Control the Distribution of Intertidal Macroalgae. Ecology 87 (5) : 1169-1178. DOI: 10.1890/00129658(2006)87[1169:ibwaag]2.0.co;2. [CrossRef] [PubMed] [Google Scholar]
  20. Karkarey. R, Rathod. P, Arthut. R, Yadav. S, Theo. A, Alcoverro. T. 2020. Wave exposure reduces herbivory in post-disturbed reefs by fltering species composition, abundance and behaviour of key fsh herbivores. Scientific Reports 10 (1): 1-14. DOI: 10.1038/s41598-020-66475-y. [Google Scholar]
  21. Kelly. E. L. A, Eynaud. Y, Williams. I. D, Sparks. R. T, Dailer. M. L, Sandin. S. A, Smith. J. E. 2017. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8 (8) : 1-16. doi/10.1002/ecs2.1899/full. [PubMed] [Google Scholar]
  22. Kumar. G. S, Umamaheswari. S, Kavimani. S, Ilavarasan. R. 2019. Pharmacological Potential Of Green Algae Caulerpa: A Review. IJPSR 10 (3): 1014-1024. DOI: 10.13040/IJPSR.09758232.10(3).1014-24. [Google Scholar]
  23. Lamb. R. W, Smith. F, Witman. J. D. 2020. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 101 (1) : 1-17. doi.org/10.1002/ecy.2910. [Google Scholar]
  24. Llamas. E. G, Bucol. A. B, Wagey. B. T. 2018. Standing-Stock Biomass And Diversity Of Caulerpa (Chlorophyta) In Solong-On, Siquijor Island, Philippines. Jurnal Ilmiah Sains 18 (2) : 85-96. DOI: 10.35799/jis.18.2.2018.20821. [CrossRef] [Google Scholar]
  25. Lodola. A. 2013. Distribution and abundance of the tropical macroalgae Caulerpa racemosa var. cylindracea (Chlorophyta: Caulerpaceae) and Asparagopsis taxiformis (Rhodophyta: Bonnemaisoniaceae) in the upper infralittoral fringe of Linosa island. Scientifica Acta 7 (1) : 311. [Google Scholar]
  26. Manas. H. M, Deshmukhe. G, Venkateshwarlu. G, Chakraborty. S. K, Jaiswar. A. K, Pankajkumar. H, Mugaonkar, Dar. S. A. 2015. Morphological comparison of different Caulerpa J. V. Lamouroux species along Maharashtra and Gujarat coasth, India. Indian Journal of Geo-Marine Sciences 44 (5) : 732-737. [Google Scholar]
  27. Melsasail. K, Awan. A, Papilaya. P. M, Rumahlatu. D. 2018. The ecological structure of macroalgae community on various zones in the coastal waters of Nusalaut Island, Central Maluku District, Indonesia. AACL Bioflux 11 (4) : 957-966. [Google Scholar]
  28. Nagaraj. S. R, Osborne. J. W. 2014. Bioactive compounds from Caulerpa racemosa as a potent larvicidal and antibacterial agent. Front. Biol 9 (4) : 300–305. DOI 10.1007/s11515-014-1312-4. [CrossRef] [Google Scholar]
  29. Notowinarto, Ramses, Destaria. 2015. Morphometrics Growth of eucheuma cottoni Thallus at Distric Bulang Island Area. Prosiding Seminar Nasional Biologi : 142-148 [Google Scholar]
  30. Pandya. K. Y, Patel. R. V, Jasrai. R. T, Barahmbhatt. N. 2017a. Comparison Of Bioremediation Efficiency Of Caulerpa Racemosa and Ulva Lactuca From Industrial Dye Effluents. International Journal of Recent Scientific Research 8 (7) : 18661-18672. DOI: 10.24327/IJRSR. [Google Scholar]
  31. Paul. N. A, Nys. R. D. 2008. Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 281 : 49–55. doi:10.1016/j.aquaculture.2008.05.024. [CrossRef] [Google Scholar]
  32. Pereira. L. 2018. Seaweeds as Source of Bioactive Substances and Skin Care Therapy Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 5, (68) : 1-41, doi:10.3390/cosmetics5040068 [CrossRef] [Google Scholar]
  33. Rehena. J. F. 2009. Produktivitas Biomassa dan Laju Pertumbuhan Rumput Laut Eucheuma cottonii di Perairan Wael Seram Bagian Barat Provinsi Maluku. Journal of Biological Researches 14 (2) : 197-202. DOI: 10.23869/bphjbr.14.2.200911. [CrossRef] [Google Scholar]
  34. Sunny. A. R. 2017. A review on effect of global climate change on seaweed and seagrass. International Journal of Fisheries and Aquatic Studies 5 (6) : 19-22. [Google Scholar]
  35. Svensson. C. J, Baden. S, Moksnes. P. O, Aberg. P. 2012. Temporal mismatches in predator– herbivore abundance control algal blooms in nutrient-enriched seagrass ecosystems. Marine Ecology Progress Series 471 : 61-71. doi: 10.3354/meps10014. [CrossRef] [Google Scholar]
  36. Pusvariauwaty, Notowinarto, Ramses. 2015. Pertumbuhan morfometrik Thallus Rumput Laut Eucheuma Cottoni di Perairan Pulau Bulang Batam. SIMBIOSA 4 (2) : 91-96 [CrossRef] [Google Scholar]
  37. Tapotubun. A. M, Matrutty. T. E, Riry. J, Tapotubun. E. J, Fransina. E. G, Mailoa. M. N, Riry. W. A, Setha. B, Riewpassa. F. 2020. Seaweed Caulerpa sp position as functional food. Earth and Environmental Science 517 : 1-8. doi:10.1088/1755-1315/517/1/012021. [Google Scholar]
  38. Vides. L. C. 2002. Morphological Plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in Relation to Growth Form in a Coral Reef Lagoon. Botanica Marina 45 (2) : 123-129. DOI: 10.1515/BOT.2002.013. [Google Scholar]
  39. Yuewen. D, Adzigbli. L. 2018. Assessing the Impact of Oil Spills on Marine Organisms. Journal of Oceanography and Marine Research 6 (1) : 1-7. doi: 10.4172/2572-3103.1000179 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.