Open Access
E3S Web Conf.
Volume 328, 2021
International Conference on Science and Technology (ICST 2021)
Article Number 07012
Number of page(s) 6
Section Mechanical, Computational & Simulation, Heat Treatment, Bio Composite
Published online 06 December 2021
  1. V. C. Nguyen, T. D. Nguyen, and D. H. Tien, “Cutting Parameter Optimization in Finishing Milling of Ti-6Al-4V Titanium Alloy under MQL Condition using TOPSIS and ANOVA Analysis,” Eng. Technol. Appl. Sci. Res., vol. 11, no. 1, pp. 6775-6780, 2021, doi: 10.48084/etasr.4015. [Google Scholar]
  2. M. S. Sisodiya and V. Bajpai, “An Insight: Machining of Titanium Alloys & Associated Tool Wear,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1017, p. 12013, 2021, doi: 10.1088/1757-899x/1017/1/012013. [CrossRef] [Google Scholar]
  3. M. H. Ali Abotiheen, B. Khidhir, B. Mohamed, R. Balasubramanian, and A. Ataollahi Oshkour, Machining of Titanium Alloys: A Review, vol. 204. 2011. [Google Scholar]
  4. J. Menezes, M. A. Rubeo, K. Kiran, A. Honeycutt, and T. L. Schmitz, “Productivity Progression with Tool Wear in Titanium Milling,” Procedia Manuf., vol. 5, pp. 427-441, 2016, doi: [Google Scholar]
  5. A. Iqbal et al., “Sustainable Milling of Ti-6Al- 4V: Investigating the Effects of Milling Orientation, Cutter’s Helix Angle, and Type of Cryogenic Coolant,” Metals, vol. 10, no. 2. 2020, doi: 10.3390/met10020258. [CrossRef] [Google Scholar]
  6. M. Tools, “<130 High Speed Milling Of Titanium Alloys Kaynaklarindan Kaynak Çikar.pdf>,” vol. 3, pp. 131-140, 2008. [Google Scholar]
  7. F. I. Stratogiannis, N. I. Galanis, N. E. Karkalos, and A. P. Markopoulos, “Optimization of the Manufacturing Strategy, Machining Conditions, and Finishing of a Radial Impeller,” Machines, vol. 8, no. 1, 2020, doi: 10.3390/machines8010001. [Google Scholar]
  9. E. M. Rubio, A. Bericua, B. de Agustina, and M. M. Marin, “Analysis of the surface roughness of titanium pieces obtained by turning using different cooling systems,” Procedia CIRP, vol. 79, pp. 79-84, 2019, doi: [CrossRef] [Google Scholar]
  10. R. S, K. Lk, and K. Palanikumar, “Surface Roughness Analysis in Machining of Titanium Alloy,” Mater. Manuf Process., vol. 23, pp. 174-181, Feb. 2008, doi: 10.1016/s.matdes2004.05.008. [Google Scholar]
  11. A. Mufarrih, H. Istiqlaliyah, and M. M. Ilha, “Optimization of Roundness, {MRR} and Surface Roughness on Turning Process using Taguchi-{GRA},” J. Phys. Conf. Ser., vol. 1179, p. 12099, Jul. 2019, doi: 10.1088/17426596/1179/1/012099. [Google Scholar]
  12. V. G. Umasekar, G. Msn, K. Rahul, S. Saikiran, and G. V Mowli, “Investigation of surface roughness in finish turning of titanium alloy Ti- 6Al-4V,” ARPN J. Eng. Appl. Sci., vol. 12, pp. 5029-5034, Sep. 2017. [Google Scholar]
  13. A. Kumar and G. Sehrawat, “Investigation of Surface Roughness and Tool wear during turning of Titanium Alloy Grade 5 (Ti-6Al-4V) by using coated carbide tool and optimization of process parameters,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1033, no. 1, 2021, doi: 10.1088/1757-899X/1033/1/012067. [Google Scholar]
  14. M. Wimmer et al., “The influence of the process parameters on the surface integrity during peripheral milling of Ti-6Al-4V:,” tm - Tech. Mess., vol. 87, no. 11, pp. 721-731, 2020, doi: doi:10.1515/teme-2020-0052. [CrossRef] [Google Scholar]
  15. J. Nithyanandam, S. LalDas, and K. Palanikumar, “Surface Roughness Analysis in Turning of Titanium Alloy by Nanocoated Carbide Insert,” ProcediaMater. Sci., vol. 5, pp. 2159-2168, 2014, doi: [Google Scholar]
  16. N. E. Karkalos, N. I. Galanis, and A. P. Markopoulos, “Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques,” Measurement, vol. 90, pp. 25-35, 2016, doi: [CrossRef] [Google Scholar]
  17. R. Izamshah, B. Redzuwan, M. Aziz, and M. Kasim, “Comparative study of tool wear in milling titanium alloy (Ti-6Al-4V) using PVD and CVD coated cutting tool,” Ind. Lubr. Tribol., vol. 69, May 2017, doi: 10.1108/ILT-09-2016-0202. [Google Scholar]
  18. G. Kiswanto, A. Mandala, M. Azmi, and T. J. Ko, “The Effects of Cutting Parameters to the Surface Roughness in High Speed Cutting of Micro-Milling Titanium Alloy Ti-6Al-4V,” in Engineering and Innovative Materials VIII, 2020, vol. 846, pp. 133-138, doi: 10.4028/ [Google Scholar]
  19. R. T. Abrahao, V. Postal, J. Paiva, and R. Guardani, “Wettability study for pigmentary titanium dioxide,” J. Coatings Technol. Res., vol. 10, Nov. 2013, doi: 10.1007/s11998-013-9530-2. [Google Scholar]
  20. S. Becker, R. Merz, H. Hasse, and M. Kopnarski, “Solvent cleaning and wettability of technical steel and titanium surfaces,” Adsorpt. Sci. Technol., vol. 34, no. 4-5, pp. 261-274, 2016, doi: 10.1177/0263617416645110. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.