Open Access
Issue
E3S Web Conf.
Volume 236, 2021
3rd International Conference on Energy Resources and Sustainable Development (ICERSD 2020)
Article Number 01021
Number of page(s) 6
Section Development, Utilization and Protection of Traditional Energy Resources
DOI https://doi.org/10.1051/e3sconf/202123601021
Published online 09 February 2021
  1. Wang Y., Zhang S., HAO J. (2019). Air pollution control in China: Progress, Challenges and Future Pathways [J].Research of Environmental Sciences, 32: 1755-1762. [Google Scholar]
  2. Lu, Y., Shao, M., Zheng, CH., et al (2020). Air pollutant emissions from fossil fuel consumption in China: Current status and future predictions [J]. Atmos. Environ., 231. DOI: 10.1016/j.atmosenv.2020.117536. [Google Scholar]
  3. Wang J., Lei Y., Ning M. (2018). Chinese model for improving air quality: An assessment of action plan of air pollution prevention and control [J]. Environmental Protection, 46(02): 7-11. [Google Scholar]
  4. Gao W., Tang G., Ji D.SH., et al (2016). Implementation effects and countermeasures of China’s air pollution prevention and control action plan [J]. Research of Environmental Sciences, 29(11): 1567-1574. [Google Scholar]
  5. State Council (2013). Notice of The State Council on the issuance of action Plan for The Prevention and Control of Air Pollution [EB/OL]. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm [Google Scholar]
  6. State Council (2018). The State Council issued a notice on the issuance of a three-year action plan for winning the battle against blue skies [EB/OL]. http://www.gov.cn/gongbao/content/2018/content_5306820.htm. [Google Scholar]
  7. Yue T. (2019). Study on temporal-spatial characteristics and abatement potential of air pollutants emission from industrial boilers of China [D]. Zhejiang University, Zhejiang. [Google Scholar]
  8. Xue, Y., Tian, H., Yan, J., et al (2016). Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China [J]. Environ. Pollut., 213: 717-726. [Google Scholar]
  9. Beijing Municipal Environmental Protection Bureau. Emission standard of air pollutants for boilers (DB 11/139-2015) [S]. http://sthjj.beijing.gov.cn/bjhrb/resource/cms/article/bjhrb_810265/5121572019122315140365379.pdf. [Google Scholar]
  10. Shanghai Municipal Environmental Protection Bureau. Emission standard of air pollutants for boilers (DB 31/387-2018) [S]. https://sthj.sh.gov.cn/assets/html/111212.pdf. [Google Scholar]
  11. Department of Environmental Protection of Shanxi Province. Emission standard of air pollutants for boilers (DB 14/1929-2019) [S]. https://sthjt.shanxi.gov.cn/u/cms/www/201911/251602169fi3.pdf. [Google Scholar]
  12. Department of Environmental Protection of Guangdong Province. Emission standard of air pollutants for boilers (DB 44/765-2019) [S]. http://gdee.gd.gov.cn/attachment/0/358/358008/2335291.pdf. [Google Scholar]
  13. Department of Environmental Protection of Shandong Province. Emission standard of air pollutants for boilers (DB 37/2374-2018) [S]. http://zfc.sdein.gov.cn/dfhjbz_17821/201811/t20181101_1810370.html. [Google Scholar]
  14. Yang H., Zheng CH, Jin K., et al (2017). Analysis on operation cost of SCR system in coal-fired power plant [J]. Journal of Zhejiang University (Engineering Science), 51(02): 363-369. [Google Scholar]
  15. Shi J. (2015). Cost-benefit analysis of desulfurization and denitrification technology for coal-fired power plants [D]. Zhejiang University, Hang zhou. [Google Scholar]
  16. Liu M., Shen B., Han Y., et al (2015). Cost-effectiveness analysis on measures to improve China’s coal-fired industrial boiler [J]. Energy Procedia, 75: 1549–1554. [Google Scholar]
  17. uo P.,Yue T., Han B., et al (2013). Study on control program for air pollutants from coal-fired industrial boilers [J]. Environmental Pollution & Control, 35(08):100-104. [Google Scholar]
  18. Wu N., Lu H., Wang L., et al (2018). Cost benefit analysis of denitration in coal-fired industrial boilers [J]. Environmental Engineering, 36(02):104-108. [Google Scholar]
  19. Feng SH. (2013). The techno-Economic analysis and fuzzy the fuzzy comprehensive evaluation of the denitration in industrial boilers [D]. Harbin Institute of Technology, Harbin. [Google Scholar]
  20. Li H., Wang J., Ge CH. (2013). A cost-benefit analysis of the pollution reduction during the eleventh five-year period in China [J]. Acta Scientiae Circumstantiae, 33(8): 2270-2276. [Google Scholar]
  21. Liu T. (2012). Cost-benefit analysis of the NOx emission control of power industry in China [D]. Tsinghua University, Beijing. [Google Scholar]
  22. Song S., Zhuo J., Li N., et al (2016). Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation [J]. Proceedings of the CSEE, 36 (24):6849-6858+6940. [Google Scholar]
  23. The Office of the First National Leading Group for the Census of Pollution Sources under the State Council. Handbook of production and discharge coefficient of industrial pollution sources [M]. China Environmental Science Press, Beijing: 249. [Google Scholar]
  24. Ministry of Ecology and Environment of the People’s Republic of China, Technical specification for application and issuance of pollutant permit boiler (HJ 953-2018) [S]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/pwxk/201808/t20180807_447826.shtml. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.