Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 02001
Number of page(s) 6
Section Hybrid Systems
DOI https://doi.org/10.1051/e3sconf/202123802001
Published online 16 February 2021
  1. Sustainable, T.; Energy, U. Energy Technology Perspectives 2016 Energy Technology Perspectives 2016. 2016 [Google Scholar]
  2. Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17, doi:10.1016/j.energy.2013.10.041 [CrossRef] [Google Scholar]
  3. Agency, I.E. Technology Roadmap: Hydrogen and fuel cells. SpringerReference 2015, doi:10.1007/springerreference_7300 [CrossRef] [Google Scholar]
  4. Gabrielli, P.; Fürer, F.; Mavromatidis, G.; Mazzotti, M. Robust and optimal design of multienergy systems with seasonal storage through uncertainty analysis. Appl. Energy 2019, 238, 1192–1210, doi:10.1016/j.apenergy.2019.01.064 [Google Scholar]
  5. Moser, A.; Muschick, D.; Gölles, M.; Nageler, P.; Schranzhofer, H.; Mach, T.; Ribas Tugores, C.; Leusbrock, I.; Stark, S.; Lackner, F.; et al. A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis. Appl. Energy 2020, 261, doi:10.1016/j.apenergy.2019.114342 [Google Scholar]
  6. Nemati, M.; Braun, M.; Tenbohlen, S. Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl. Energy 2018, 210, 944–963, doi:10.1016/j.apenergy.2017.07.007 [Google Scholar]
  7. Zhang, Y.; Campana, P.E.; Lundblad, A.; Yan, J. Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation. Appl. Energy 2017, 201, 397–411, doi:10.1016/j.apenergy.2017.03.123 [Google Scholar]
  8. Li, B.; Roche, R.; Miraoui, A. Microgrid sizing with combined evolutionary algorithm and MILP unit commitment. Appl. Energy 2017, 188, 547–562, doi:10.1016/j.apenergy.2016.12.038 [Google Scholar]
  9. Comodi, G.; Bartolini, A.; Carducci, F.; Nagaranjan, B.; Romagnoli, A. Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems. Appl. Energy 2019, 256, doi:10.1016/j.apenergy.2019.113901 [Google Scholar]
  10. Gabrielli, P.; Fürer, F.; Mavromatidis, G.; Mazzotti, M. Robust and optimal design of multienergy systems with seasonal storage through uncertainty analysis. Appl. Energy 2019, 238, 1192–1210 [Google Scholar]
  11. Loreti, G.; Facci, A.L.; Baffo, I.; Ubertini, S. Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells. Appl. Energy 2019, 235, 747–760, doi:10.1016/j.apenergy.2018.10.109 [Google Scholar]
  12. Wijk, A. van; Chatzimarkakis, J. Green Hydrogen for a European Green Deal: A 2x40 GW Initiative. Hydrogen Europe. 2020, 41 [Google Scholar]
  13. Cinti, G.; Bidini, G.; Hemmes, K. Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen. Appl. Energy 2019, 238, 69–77, doi:10.1016/j.apenergy.2019.01.039 [Google Scholar]
  14. Yang, Y.; Zhang, H.; Yan, P.; Jermsittiparsert, K. Multi-objective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based Micro-CHP system. Int. J. Hydrogen Energy 2020, 45, 6970–6981, doi:10.1016/j.ijhydene.2019.12.189 [Google Scholar]
  15. Farjah, E.; Bornapour, M.; Niknam, T.; Bahmanifirouzi, B. Placement of combined heat, power and hydrogen production fuel cell power plants in a distribution network. Energies 2012, 5, 790–814, doi:10.3390/en5030790 [Google Scholar]
  16. Bartolucci, L.; Cordiner, S.; Mulone, V.; Santarelli, M. Ancillary services provided by hybrid residential renewable energy systems through thermal and electrochemical storage systems. Energies 2019, 12, doi:10.3390/en12122429 [Google Scholar]
  17. Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transp. Res. Part D Transp. Environ. 2018, 64, 5–14, doi:10.1016/j.trd.2017.07.012 [CrossRef] [Google Scholar]
  18. Voldsund, M.; Jordal, K.; Anantharaman, R. Hydrogen production with CO2 capture. Int. J. Hydrogen Energy 2016, 41, 4969–4992, doi:10.1016/j.ijhydene.2016.01.009 [Google Scholar]
  19. Sharma, I.; Friedrich, D.; Golden, T.; Brandani, S. Exploring the opportunities for carbon capture in modular, small-scale steam methane reforming: An energetic perspective. Int. J. Hydrogen Energy 2019, 44, 14732–14743, doi:10.1016/j.ijhydene.2019.04.080 [Google Scholar]
  20. Frischknecht, R.; Itten, R.; Sinha, P.; WildScholten, M. de; J. Zhang, V.F.; C., H.K.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems; 2015; ISBN 9783906042282 [CrossRef] [Google Scholar]
  21. Romare, M.; Dahllöf, L. The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries; 2017; ISBN 9789188319609 [Google Scholar]
  22. CertifHy CertifHy-SD Hydrogen Criteria, CertifHy Scheme Subsidiary Document. CertifHy Scheme Subsid. Doc. 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.