Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 03004
Number of page(s) 7
Section Power to X and Thermal Storages
DOI https://doi.org/10.1051/e3sconf/202123803004
Published online 16 February 2021
  1. I. Dinçer and M. A. Rosen, Thermal Energy Storage, Systems and Applications, Wiley, 2011. [Google Scholar]
  2. P. Arce, M. Medrano, A. Gil, E. Oró and L. F. Cabeza, “Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe, ” Applied Energy, Vol. 88, pp. 2764-2774, 2011. [Google Scholar]
  3. S. Kalaiselvam and R. Parameshwaran, Thermal Energy Storage Technologies for Sustainability, Academic Press, 2014. [Google Scholar]
  4. A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, “Review on thermal energy storage with phase change materials and applications, ” Renewable and Sustainable Energy Reviews, Vol. 13, no. 2, pp. 318-347, 2009. [Google Scholar]
  5. S. Dusek and R. Hofmann, “Modeling of a Hybrid Steam Storage and Validation with an Industrial Ruths Steam Storage Line, ” energies, Vol. 6, no. 1014, 2019. [Google Scholar]
  6. G. Valenti, A. Seveso, C. N. Bonacina and A. Bamoshmoosh, “Assessment of a phase change regenerator for batch industrial dryers, ” AIP Conference Proceedings, Vol. 2191, no. 1, 2019. [Google Scholar]
  7. Z. A. Qureshi, H. M. Ali and S. Khushnood, “Recent advances on thermal conductivity enhancement of phase change materials for energy storage systems: A review, ” International Journal of Heat and Mass Transfer, Vol. 127, pp. 838-856, 2018. [Google Scholar]
  8. A. Bamoshmoosh and G. Valenti, “Constantvolume vapor-liquid equilibrium for thermal energy storage: Generalized analysis of pure fluids, ” in 75° Congresso Nazionale ATI, 2020. [Google Scholar]
  9. R. Rota, Fondamenti di Termodinamica dell’Ingegneria Chimica, Pitagora, 2015. [Google Scholar]
  10. B. I. Lee and M. G. Kesler, “A Generalized Thermodynamic Correlation Based on ThreeParameter Corresponding States, ” AIChE Journal, Vol. 21, no. 3, pp. 510-527, 1975. [Google Scholar]
  11. U. Plöcker, H. Knapp and J. Prausnitz, “Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding-States Correlation with Emphasis on Asymmetric Mixtures, ” Industrial & Engineering Chemistry Process, Design and Development, Vol. 17, no. 3, pp. 324-322, 1978. [Google Scholar]
  12. K. S. Pitzer, D. Z. Lippmann, R. F. CurlJr., C. M. Huggins and D. E. Petersen, “The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization, ” Journal of the American Chemical Society, Vol. 77, no. 13, pp. 3433-3440, 1955. [Google Scholar]
  13. E. P. Gyftopoulos and G. P. Beretta, Thermodynamics: Foundations and Applications, Dover, 2005. [Google Scholar]
  14. M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, Wiley, 2010. [Google Scholar]
  15. A. Jamar, Z. A. A. Majid, W. H. Azmi, M. Norhafana and A. A. Razak, “A review of water heating system for solar energy applications, ” International Communications in Heat and Mass Transfer, Vol. 76, pp. 178-187, 2016. [Google Scholar]
  16. DPR N° 412 dd 26/893. [Google Scholar]
  17. The International Association for the Properties of Water and Steam, “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,” IAPWS, Lucerne, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.