Open Access
E3S Web Conf.
Volume 239, 2021
International Conference on Renewable Energy (ICREN 2020)
Article Number 00016
Number of page(s) 11
Published online 10 February 2021
  1. A. A. Bayod-Rújula, “Future development of the electric system with distributed generation, ” Ener., 34, 377–383, (2009). [Google Scholar]
  2. R. Faia, P. Faria, Z. Vale, and J. Spinola, “Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House, ” Ener., 12, 1645, (2019). [Google Scholar]
  3. B. A. Frew, S. Becker, M. J. Dvorak, G. B. Andresen, and M. Z. Jacobson, “Flexibility mechanisms and pathways to a highly renewable US electricity future, ” Ener., 101, 65–78, (2016). [Google Scholar]
  4. R. Faia, B. Canizes, P. Faria, and Z. Vale, “Distribution Network Expansion Planning Considering the Flexibility Value for Distribution System Operator, ” International Conference on Smart Energy Systems and Technologies, 1–6, (2019). [Google Scholar]
  5. H. Takano, A. Kudo, H. Taoka, and A. Ohara, “A basic study on incentive pricing for demand response programs based on social welfare maximization, ” Jour. of Inter. Coun. on Electr. Engine., 8, 136–144, (2018). [Google Scholar]
  6. M. Fotouhi Ghazvini, J. Soares, H. Morais, R. Castro, and Z. Vale, “Dynamic Pricing for Demand Response Considering Market Price Uncertainty, ” Ener., 10, 1245, (2017). [Google Scholar]
  7. L. Han, T. Morstyn, and M. McCulloch, “Incentivizing Prosumer Coalitions with Energy Management using Cooperative Game Theory, ” IEEE Power & Energy Society General Meeting, 1–1, (2019). [Google Scholar]
  8. L. Han, T. Morstyn, and M. McCulloch, “Constructing Prosumer Coalitions for Energy Cost Savings Using Cooperative Game Theory, ” Power Systems Computation Conference, 1–7, (2018). [Google Scholar]
  9. R. Faia, T. Pinto, and Z. Vale, “Fair Remuneration of Energy Consumption Flexibility Using Shapley Value”, P. M. Oliveira, P. Novais, L. Reis (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science, 11804, 532–544, (2019). [Google Scholar]
  10. S. Sen and P. S. Dutta, “Searching for optimal coalition structures, ” in Proceedings Fourth International Conference on Multi-Agent Systems, 287–292, (2000). [Google Scholar]
  11. F. Lezama, J. Soares, R. Faia, and Z. Vale, “Hybrid-adaptive differential evolution with decay function (HyDE-DF) applied to the 100-digit challenge competition on single objective numerical optimization, ” in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 7–8, (2019). [Google Scholar]
  12. S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art, ” IEEE Transac. on Evolu. Compu., 15, 4–31. (2011). [Google Scholar]
  13. V. Miranda and N. Fonseca, “EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems, ” in IEEE/PES Transmission and Distribution Conference and Exhibition, 2, 745–750, (2002). [Google Scholar]
  14. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems, ” IEEE Transac. on Evolu. Compu., 10, 646–657, (2006). [Google Scholar]
  15. F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application Under Uncertainty, ” IEEE Congress on Evolutionary Computation, 1–8, (2018). [Google Scholar]
  16. E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F. de Carvalho, “A Survey of Evolutionary Algorithms for Clustering, ” IEEE Transac. on Syst. Man, Cyber. P. C (Appli. Revi.), 39, 133–155, (2009). [Google Scholar]
  17. F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application under Uncertainty, ” IEEE Congress Evolutionary Computation, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.