Open Access
Issue
E3S Web Conf.
Volume 242, 2021
The 7th International Conference on Renewable Energy Technologies (ICRET 2021)
Article Number 01003
Number of page(s) 10
Section Solar Energy Development and Utilization
DOI https://doi.org/10.1051/e3sconf/202124201003
Published online 10 March 2021
  1. N. Mohammad and Y. Mishra, “Transactive market clearing model with coordinated integration of large-scale solar PV farms and demand response capable loads”, 2017 Australas. Univ. Power Eng. Conf. AUPEC 2017, vol. 2017-Novem, pp. 1–6, 2018. [Google Scholar]
  2. M. Quamruzzaman, N. Mohammad, M. A. Matin, and M. R. Alam, “Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems”, Int. J. Sustain. Energy, vol. 35, no. 9, pp. 914–932, 2016. [Google Scholar]
  3. C. Xu, Z. Wang, X. Li, and F. Sun, “Energy and exergy analysis of solar power tower plants”, Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3904–3913, 2011. [Google Scholar]
  4. S. Hossain, S. Shajid, “Design Optimization , Simulation & Performance Analysis of 100MW Solar Tower Thermal Power”, pp. 323–330, 2020. [Google Scholar]
  5. I. M. Faisal and S. Parveen, “Food security in the face of climate change, population growth, and resource constraints: Implications for Bangladesh”, Environmental Management, vol. 34, no. 4. pp. 487–498, 2004. [PubMed] [Google Scholar]
  6. S. Islam and M. Z. R. Khan, “A Review of Energy Sector of Bangladesh”, Energy Procedia, vol. 110, no. December 2016, pp. 611–618, 2017. [Google Scholar]
  7. N. Mohammad and Y. Mishra, “The role of demand response aggregators and the effect of GENCOS strategic bidding on the flexibility of demand”, Energies, vol. 11, no. 12, 2018. [Google Scholar]
  8. N. Mohammad and Y. Mishra, “Coordination of wind generation and demand response to minimise operation cost in dayahead electricity markets using bi-level optimisation framework”, IET Gener. Transm. Distrib., vol. 12, no. 16, pp. 3793–3802, 2018. [Google Scholar]
  9. Power Division, “Power System Master Plan 2016.”, Minist. Power, Energy Miner. Resour. Gov. People’s Repub. Bangladesh, no. September, pp. 1–137, 2016. [Google Scholar]
  10. A. Barua, S. Chakraborti, D. Paul, and P. Das, “Analysis of Concentrated Solar Power Technologies’ Feasibility, Selection and Promotional Strategy for Bangladesh”, J. Mech. Eng., vol. 44, no. 2, pp. 112–116, 2015. [Google Scholar]
  11. S. Nabeel, “Energy consumptions and PV system cost comparison between energy audited and nonenergy audited facility .”, pp. 187–190, 2017. [Google Scholar]
  12. P. Of, S. Power, and I. T. S. Applications, “ICMERE2015-PI-074”, vol. 2015, pp. 26–29, 2015. [Google Scholar]
  13. K. Anam and Husnain-Al-Bustam, “Power Crisis & Its Solution through Renewable Energy in Bangladesh”, J. Sel. Areas Renew. Sustain. Energy, pp. 13–18, 2011. [Google Scholar]
  14. S. H. Khan, T. Rahman, and S. Hossain, “Prospect of Solar Energy in Generation of Electricity in Bangladesh”, Multidiscip. Journals Sci. Technol. J. Sel. Areas Renew. Sustain. Energy, vol. June Editi, no. September 2012, p. 8, 2013. [Google Scholar]
  15. M. P. Taufiq Rohman, S.Pd.I, “An Overview of Concentrated Solar Power (CSP) Technologies and its Opportunities in Bangladesh”, Psikol. Perkemb., no. October 2013, pp. 1–224, 2019. [Google Scholar]
  16. Z. Yao, Z. Wang, Z. Lu, and X. Wei, “Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China”, Renew. Energy, vol. 34, no. 11, pp. 2437–2446, 2009. [Google Scholar]
  17. X. Li, W. Kong, Z. Wang, C. Chang, and F. Bai, “Thermal model and thermodynamic performance of molten salt cavity receiver”, Renew. Energy, vol. 35, no. 5, pp. 981–988, 2010. [Google Scholar]
  18. L. Jianfeng, D. Jing, and Y. Jianping, “Heat transfer performance and exergetic optimization for solar receiver pipe”, Renew. Energy, vol. 35, no. 7, pp. 1477–1483, 2010. [Google Scholar]
  19. R. Chen, Z. Rao, and S. Liao, “Determination of key parameters for sizing the heliostat field and thermal energy storage in solar tower power plants”, Energy Convers. Manag., vol. 177, no. May, pp. 385–394, 2018 [Google Scholar]
  20. A. B. Zavoico, “Solar Power Tower Design Basis Document”, Tech. Rep. SAND2001-2100, no. July, p. 148, 2001. [Google Scholar]
  21. A. M. Kruizenga, D. D. Gill, and M. Laford, “Materials Corrosion of High Temperature Alloys Immersed in 600 ° C Binary Nitrate Salt”, Sandia Rep., vol. SAND 2013-, no. March, pp. 1–57, 2013 [Google Scholar]
  22. M. N. S. K. Shabbir, M. S. A. Chowdhury, and X. Liang, “A guideline of feasibility analysis and design for concentrated solar power plants”, Can. J. Electr. Comput. Eng., vol. 41, no. 4, pp. 203–217, 2018. [Google Scholar]
  23. NREL. (2018). SAM Webinars 2017: Modeling Molten Salt Power Tower Systems in SAM 2017.1.17. [Google Scholar]
  24. S. Sukumaran and K. Sudhakar, “Fully solar powered Raja Bhoj International Airport: A feasibility study”, Resour. Technol., vol. 3, no. 3, pp. 309–316, 2017 [Google Scholar]
  25. A. Sahu, N. Yadav, and K. Sudhakar, “Floating photovoltaic power plant: A review”, Renew. Sustain. Energy Rev., vol. 66, pp. 815–824, 2016 [Google Scholar]
  26. B. Shiva Kumar and K. Sudhakar, “Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India”, Energy Reports, vol. 1, pp. 184–192, 2015 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.