Open Access
Issue
E3S Web Conf.
Volume 242, 2021
The 7th International Conference on Renewable Energy Technologies (ICRET 2021)
Article Number 01005
Number of page(s) 8
Section Solar Energy Development and Utilization
DOI https://doi.org/10.1051/e3sconf/202124201005
Published online 10 March 2021
  1. Galagan Y , Coenen E W C , Verhees W J H , et al. Towards the scaling up of perovskite solar cells and modules[J]. Journal of Materials Chemistry A, 2016, 4(15):5700-5705. [Google Scholar]
  2. Schmidt T M, Larsen-Olsen T T, Jon E. CarléDechan Angmo, et al. Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes[J]. Advanced Energy Materials, 2015, 5(15). [Google Scholar]
  3. Razza S, Castro-Hermosa S, Di Carlo A, et al. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology[J]. Apl Materials, 2016, 4(9):104003. [Google Scholar]
  4. Bishop J E, Read C D, Smith J A, et al. Fully Spray-Coated Triple-Cation Perovskite Solar Cells[J]. Scientific Reports, 2020, 10(1). [Google Scholar]
  5. Nrel. Best Research-cell Efficiencies 1975–2020[Z]. https://www.nrel.gov/pv/cell-efficiency.html. [Google Scholar]
  6. Mescher H, Schackmar F, Eggers H , et al. Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors[J]. ACS Applied Materials & Interfaces, 2020, 12(13). [Google Scholar]
  7. Zhanhua Wei, Haining D, et al. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells[J]. Angewandte Chemie, 2014, 126(48):13455-13459. [Google Scholar]
  8. Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss[J]. Science, 369. [Google Scholar]
  9. Kim Y Y, Yang T Y, Suhonen R, et al. Gravure-Printed Flexible Perovskite Solar Cells: Toward Roll-to-Roll Manufacturing[J]. Advanced Science, 2019. [Google Scholar]
  10. Kyeongil, Hwang, Yen-Sook, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells.[J]. Advanced materials (Deerfield Beach, Fla.), 2015. [Google Scholar]
  11. Sears K K, Fievez M, Gao M, et al. ITO Free Flexible Perovskite Solar Cells Based on Roll-to-Roll, Slot-die Coated Silver Nanowire Electrodes[J]. Solar RRL, 2017, 1(8). [Google Scholar]
  12. Kim, Jueng-Eun, Kim, Seok-Soon, Zuo C, et al. Humidity-Tolerant Roll-to-Roll Fabrication of Perovskite Solar Cells via Polymer-Additive-Assisted Hot Slot Die Deposition[J]. Advanced Functional Materials, 2019, 29(26):1809194.1-1809194.9. [Google Scholar]
  13. Deng Y, Peng E, Shao Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5):1544-1550. [Google Scholar]
  14. Tang S, Deng Y, Zheng X, et al. Composition Engineering in Doctor‐Blading of Perovskite Solar Cells[J]. Advanced Energy Materials, 2017, 7(18):1700302.1-1700302.7. [Google Scholar]
  15. Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A, 2016: 10.1039.C6TA07972E. [Google Scholar]
  16. OLED-inform. OLED ink jet printing: introduction and market status [EB/OL] https://www.oled-info.com/oled-inkjet-printing. [Google Scholar]
  17. Zhanhua, Wei, Haining D , et al. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells[J]. Angewandte Chemie, 2014, 126(48):13455-13459. [Google Scholar]
  18. Haotong, Wei, Jinsong, et al. Halide lead perovskites for ionizing radiation detection.[J]. Nature communications, 2019. [Google Scholar]
  19. Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 2020. [Google Scholar]
  20. Druffel T, Dharmadasa R, Lavery B W, et al. Intense pulsed light processing for photovoltaic manufacturing[J]. Solar Energy Materials & Solar Cells, 2018, 174:359-369. [Google Scholar]
  21. A. H. Ghahremani and T. Druffel, Realizing Perovskite Solar Cells on Roll Roll-to-Roll Compatible Processes, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 2019, pp. 1-5, doi: 10.1109/PVSC40753.2019.9198957. [Google Scholar]
  22. Kim Y Y, Yang T Y, Suhonen R, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window[J]. Nature Communications. [Google Scholar]
  23. Wu, M., Haji Ladi, N., Yi, Z., Li, H., Shen, Y. and Wang, M. (2020), Stability Issue of Perovskite Solar Cells under Real ‐ World Operating Conditions. Energy Technol., 8: 1900744. [Google Scholar]
  24. Di J, Chang J, Liu S F. Recent progress of two-imensional lead halide perovskite single crystals: Crystal growth, physical properties, and device applications[J]. EcoMat, 2020. [Google Scholar]
  25. Zhao Y, Wei J, Li H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nature Communications, 2016, 7:10228. [PubMed] [Google Scholar]
  26. SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. [Google Scholar]
  27. Fei F, Mai J D, Li W J. A wind-flutter energy converter for powering wireless sensors[J]. Sensors & Actuators A Physical, 2012, 173(1):163-171. [Google Scholar]
  28. Aquino A I, Calautit J K, Hughes B R. A Study on the Wind-Induced Flutter Energy Harvester (WIFEH) Integration into Buildings[J]. Energy Procedia, 2017, 142:321-327 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.