Open Access
Issue
E3S Web Conf.
Volume 244, 2021
XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020)
Article Number 04010
Number of page(s) 10
Section Use and Conservation of Natural Resources
DOI https://doi.org/10.1051/e3sconf/202124404010
Published online 19 March 2021
  1. C. Payan, O. Abraham, V. Garnier, Ultrasonic Methods. In Non-Destructive Testing and Evaluation of Civil Engineering Structures (Elsevier Inc., 2018) DOI: 10.1016/B978-1-78548-229-8.50002-9 [Google Scholar]
  2. Q.A. Vu, V. Garnier, J.F. Chaix, C. Payan, M. Lott, J.N. Eiras, Concrete cover characterisation using dynamic acousto-elastic testing and Rayleigh waves, Const. and Build. Mat. 114, 87–97 (2016) DOI: 10.1016/j.conbuildmat.2016.03.116 [Google Scholar]
  3. A.M.T. Hassan, S.W. Jones, Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques, Const. and Buil. Mat. 35, 361–367 (2012) DOI: 10.1016/j.conbuildmat.2012.04.047 [Google Scholar]
  4. V. Garnier, B. Piwakowski, O. Abraham, G. Villain, C. Payan, J.F. Chaix, Acoustic techniques for concrete evaluation: Improvements, comparisons and consistency, Const. and Build. Mat. 43, 598–613 (2013) DOI: 10.1016/j.conbuildmat.2013.01.035 [Google Scholar]
  5. T. Planès, E. Larose, A review of ultrasonic Coda Wave Interferometry in concrete, Cem. and Concr. Res. 53, 248–255 (2013) DOI: 10.1016/j.cemconres.2013.07.009 [Google Scholar]
  6. K. Schabowicz, Ultrasonic tomography - The latest nondestructive technique for testing concrete members - Description, test methodology, application example, Arch. of Civ. and Mech. Eng. 14, 295–303 (2014) DOI: 10.1016/j.acme.2013.10.006 [Google Scholar]
  7. F. Moradi-Marani, P. Rivard, C.P. Lamarche, S.A. Kodjo, Evaluating the damage in reinforced concrete slabs under bending test with the energy of ultrasonic waves, Const. and Build. Mat. 73, 663–673 (2014) DOI: 10.1016/j.conbuildmat.2014.09.050 [Google Scholar]
  8. Y. Xu, R. Jin, Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network, Const. and Build. Mat. 177, 125–133 (2018) DOI: 10.1016/j.conbuildmat.2018.05.124 [Google Scholar]
  9. J. Wolf, S. Pirskawetz, A. Zang, Detection of crack propagation in concrete with embedded ultrasonic sensors, Eng. Frac. Mech. 146, 161–171 (2015) DOI: 10.1016/j.engfracmech.2015.07.058 [Google Scholar]
  10. H. Choi, J.S. Popovics, NDE application of ultrasonic tomography to a full-scale concrete structure, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 62, 1076–1085 (2015) DOI: 10.1109/TUFFC.2014.006962 [PubMed] [Google Scholar]
  11. O. Tsioulou, A. Lampropoulos, S. Paschalis, Combined Non-Destructive Testing (NDT) method for the evaluation of the mechanical characteristics of Ultra High Performance Fibre Reinforced Concrete (UHPFRC), Const. and Buil. Mat. 131, 66–77 (2017) DOI: 10.1016/j.conbuildmat.2016.11.068 [Google Scholar]
  12. G. Karaiskos, A. Deraemaeker, D.G. Aggelis, D. Van Hemelrijck, Monitoring of concrete structures using the ultrasonic pulse velocity method, Smart Mat. and Str. 24 (2015) DOI: 10.1088/0964-1726/24/11/113001 [Google Scholar]
  13. G. Karaiskos, E. Tsangouri, D.G. Aggelis, K. Van Tittelboom, N. De Belie, D. Van Hemelrijck, Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods, Smart Mat. and Str. 25 (2016) DOI: 10.1088/0964-1726/25/5/055003 [Google Scholar]
  14. M.V. Gravit, D. Serdjuks, A.V. Bardin, V. Prusakov, K. Buka-Vaivade, Fire Design Methods for Structures with Timber Framework, Mag. of Civ. Eng. 85 (1), 92–106 (2019) DOI: 10.18720/MCE.85.8 [Google Scholar]
  15. K. Buka-Vaivade, D. Serdjuks, V. Goremikins, L. Pakrastins, N.I. Vatin, Suspension structure with cross-laminated timber deck panels, Mag. of Civ. Eng. 83 (7), 126–135 (2018) DOI: 10.18720/MCE.83.12 [Google Scholar]
  16. R. Vasiljevs, D. Serdjuks, K. Buka-Vaivade, A. Podkoritovs, N. Vatin, Load-carrying capacity of timber-concrete composite panels, Mag. of Civ. Eng. 93 (1), 60–70 (2020) DOI: 10.18720/MCE.93.6 [Google Scholar]
  17. V. Goremikins, D. Serdjuks, K. Buka-Vaivade, L. Pakrastins, N.I. Vatin, Prediction of behaviour of prestressed suspension bridge with timber deck panels, The Balt. Jour. of Road and Brid. Eng. 12 (4), 234–240 (2017) DOI: 10.3846/bjrbe.2017.29 [Google Scholar]
  18. R. Vasiljevs, D. Serdjuks, J. Gerasimova, K. Buka-Vaivade, A. Orhun Erüz, Behaviour of timber-concrete joints in hybrid members subjected to flexure, IOP Confernce Series: Mat. Sc. and Eng. 660, 1-9, 012050 (2019) DOI: 10.1088 / 1757-899X / 660/1/012050 [Google Scholar]
  19. R. Vasiljevs, D. Serdjuks, K. Buka-Vaivade, A. Podkoritovs, N. Vatin, Load-carrying capacity of timber-concrete composite panels, Mag. of Civ. Eng. 93 (1), 60–70 (2020) DOI: 10.18720/MCE.93.6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.