Open Access
E3S Web Conf.
Volume 244, 2021
XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020)
Article Number 05016
Number of page(s) 12
Section Ecodesign and Energy Labelling
Published online 19 March 2021
  1. A. Hanor, and R. Levy, “Evaluation of déployable structures for space enclosures”, International Journal of Space Structures 16, 4, 211–228 (2001) [Google Scholar]
  2. A. Sljivic, Primjena lakih sklopivo-rasklopivih stapnih konstrukcija u arhitekturi, Ph.D. Dissertation, University of Sarajevo, Faculty of Architecture (2019) [Google Scholar]
  3. F. Escrig, General Survey of Deployability in Architecture, Transactions on the Built Environment 21, 3–22 (1996) doi: 10.2495/MRS960011 [Google Scholar]
  4. S. Pellegrino, Deployable Structure (Springer-Verlag Wien GmbH, 2001) [Google Scholar]
  5. C. Gantes, A design methodology for deployable structure (Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, 1991) [Google Scholar]
  6. K. Korkmaz, An analytical study of the design potentials in kinetic architecture (Ph.D. Dissertation, Izmir Yüksek Teknoloji Enstitüsü, Izmir, 2004) [Google Scholar]
  7. N. De Temmerman, Design and Analysis of Deployable Bar Structures for Mobile Architectural Applications (Ph.D. Dissertation, Vrije Universiteit Brussel, Faculty of Engineering, Department of Architectural Engineering Sciences, Brussel, 2007) [Google Scholar]
  8. A.E. Del Grosso, and P. Basso, Deployable structures, Advances in Science and Technology 83, 122–131 (2015) [Google Scholar]
  9. E. Rivas Adrover, Deployable structure (London: Laurence King Publishing Ltd., 2015) [Google Scholar]
  10. F. Escrig, New Designs and Geometries of Déployable Scissor Structures, Adaptable 2006, TU/e, International Conference On Adaptable Building Structures Eindhoven (2006) [Google Scholar]
  11. N. Friedman, Investigation of highly flexible deployable structures: review, modelling, control, experiments and application (Ph.D. Dissertation, Ecole Normale Superieure de Cachan and Budapest University of Technology and Economics., Cachan and Budapest, 2011) [Google Scholar]
  12. G. Tibert, Deployable tensegrity structures for space applications (Ph.D. Dissertation, Royal Institute of Technology Department of Mechanics, Stockholm, Sweden, 2002) [Google Scholar]
  13. J. Cai, R. Ma, X. Deng, J. Feng, Static behavior of deployable cable-strut structures, Journal of Constructional Steel Research 119, 63–75 (2016) [Google Scholar]
  14. A.I. Britt, and H. Lalvani, Symmetry as a Basis from Morphological Analysis and Generation of Nasa-Type Cubic Déployables. IUTAM-IASS Symposium on Deployable Structures: Theory and Applications. S. Pellegrino and S.D. Guest (eds), 45–54. Kluwer Academic Publishers (2000) [Google Scholar]
  15. N.O. Melin, Application of Bennett mechanisms to long-span shalters (Ph.D. Dissertation, University of Oxford, Department of Engineering Science, Oxford, 2004) [Google Scholar]
  16. Y. Akgtin, A novel transformation model for deployable scissor-hinge structures (Ph.D. Dissertation. Stuttgart: Universität Stuttgart, Institut für Leichtbau Entwerfen und Konstruieren, 2010) [Google Scholar]
  17. L. Algeria Mira, Design and analysis of a universal scissor component for mobile architectural applications (Master Thesis, Vrije Univeriteit Brussel, Brussel, 2010) [Google Scholar]
  18. D.E. El-Zanfaly, Active shapes: introducing guidelines for designing kinetic architectural structures (Master Thesis, Massachusetts Institute of Technology, Department of Architecture, 2011) [Google Scholar]
  19. M.B. Sala, and R.S. Sastre, “Mobility and transformability in architectural structures. Proposal of a transformable system of telescopic and X- articulated bars: kinematic, geometric, and structural analysis”, Proceedings of the First Conference Transformables 2013. In the Honor of Emilio Perez Pinero 18-20th September, 1-6, School of Architecture, Seville, Spain (2013) [Google Scholar]
  20. D. Rosenberg, Designing for uncertainty: novel shapes and behaviors using scissor-pair transformable structures (Master Thesis, Massachusetts Institute of Technology, Cambridge, 2009) [Google Scholar]
  21. Sh. Lu, D. Zlatanov, X. Ding, and R. Molfino, A new family of deployable mechanisms based on the Hoekens linkage, Mechanism and Machine Theory 73, 130–153 (2014) [Google Scholar]
  22. K. Roovers, and N. De Temmerman, Digital design of deployable scissor grids based on circle packing, Proceedings of the IASS 2015 Symposium “Future Visions, Amsterdam (2015) [Google Scholar]
  23. G.E.B Tan, and S. Pellegrino, Nonlinear vibration of cable-stiffened pantographic deployable structures, Journal of Sound and Vibration 314, 783–802 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.