Open Access
Issue
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 01041
Number of page(s) 7
Section Energy Development and Utilization and Energy-Saving Technology Application
DOI https://doi.org/10.1051/e3sconf/202124501041
Published online 24 March 2021
  1. Tan Yimin, Lin Kejian, and Zhang Zuguang. Comprehensive Modelling of A Slotless Halbach Linear Generator Based Wave Energy convertor, Proceedings of 44th Annual Conference, IEEE Industrial Electronics Society (IECON), Washington DC, 2018. [Google Scholar]
  2. Elie Al Shami, Ran Zhang, Xu Wang. Point Absorber Wave Energy Harvesters: A Review of Recent Developments[J]. Energies, 2018, 12(1). [Google Scholar]
  3. Marcus Lehmann, Farid Karimpour, Clifford A. Goudey, Paul T. Jacobson, Mohammad-Reza Alam. Ocean wave energy in the United States: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 74. [Google Scholar]
  4. Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102 [Google Scholar]
  5. Hande A, Polk T, Walker W, Bhatia D. Indoor solar energy harvesting for sensor network router nodes. Microprocess Microsyst. 2007; 31:420-432. https://doi.org/10.1016/j.micpro. 2007.02.006. [Google Scholar]
  6. Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct. 2007; 16:R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01. [Google Scholar]
  7. Ringeisen BR, Henderson E, Wu PK, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 2006;40:2629-2634. https://doi.org/10.1021/es052254w. [Google Scholar]
  8. Al-Yafeai D, Darabseh T, Mourad A H I. A State-of-the-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems[J]. Energies, 2020, 13(9): 2336. [Google Scholar]
  9. Nayyar A, Stoilov V. Power generation from airflow induced vibrations. Wind Eng. 2015; 39:175-182. https://doi.org/10. 1260/0309-524X.39.2.175. [Google Scholar]
  10. Wright G. The International Renewable Energy Agency: A Global Voice for the Renewable Energy Era[J]. Renewable Energy L. & Pol’y Rev., 2011, 2: 251. [Google Scholar]
  11. Gammaitoni L, Neri I, Vocca H. Nonlinear oscillators for vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(16): 164102. [Google Scholar]
  12. Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18. [Google Scholar]
  13. Harne R L, Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart materials and structures, 2013, 22(2): 023001. [Google Scholar]
  14. Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting[J]. Microelectronics Journal, 2008, 39(5): 802-806. [Google Scholar]
  15. Elfrink R, Kamel T M, Goedbloed M, et al. Vibration energy harvesting with aluminum nitride-based piezoelectric devices[J]. Journal of Micromechanics and Microengineering, 2009, 19(9): 094005. [Google Scholar]
  16. Challa V R, Prasad M G, Shi Y, et al. A vibration energy harvesting device with bidirectional resonance frequency tunability[J]. Smart Materials and Structures, 2008, 17(1): 015035. [CrossRef] [Google Scholar]
  17. Ma Tianbing, Chen Nannan, Wu Xiaodong, Du Fei, Ding Yongjing. Z-type piezoelectric vibration energy harvesting device[J]. Optics and Precision Engineering, 2019, 27(09):1968-1980. [Google Scholar]
  18. Wang L, Yuan F G. Vibration energy harvesting by magnetostrictive material[J]. Smart Materials and Structures, 2008, 17(4): 045009. [Google Scholar]
  19. Mohanty A, Parida S, Behera R K, et al. Vibration energy harvesting: A review[J]. Journal of Advanced Dielectrics, 2019, 9(04): 1930001. [Google Scholar]
  20. Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102. [Google Scholar]
  21. Wang L, Yuan F G. Vibration energy harvesting by magnetostrictive material[J]. Smart Materials and Structures, 2008, 17(4): 045009. [Google Scholar]
  22. Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibration energy harvesting[J]. Journal of Micromechanics and microengineering, 2007, 17(7): 1257. [CrossRef] [Google Scholar]
  23. Graf C, Hitzbleck J, Feller T, et al. Dielectric elastomer–based energy harvesting: Material, generator design, and optimization[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(8): 951-966. [Google Scholar]
  24. Rui Xiaobo, Li Yibo, Zeng Zhoumo. Research progress of piezoelectric cantilever vibration energy collector[J]. Journal of vibration and shock, 2020, 39(17):112-123. [Google Scholar]
  25. Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18. [Google Scholar]
  26. Lu F, Lee HP, Lim SP. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 2004; 13(1):57 [Google Scholar]
  27. Sodano HA, Inman DJ, Park G. A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 2004; 36(3):197–205. [Google Scholar]
  28. Deng Zhiqiang, Wang Xiang, Shan Haisheng. Modeling and experiment of large-scale principle prototype based on piezoelectric[J]. Transducer and microsystem technologies, 2015, 34(08):13-15. [Google Scholar]
  29. Roundy S, Wringt P K, Rabaey J. A Study of low level vibrations as a power source for wiresless sensor nodes[J]. Computer communications, 2003, 26(11):1131-1144. [Google Scholar]
  30. Liu H, Fu H, Sun L, et al. Hybrid energy harvesting technology: From materials, structural design, system integration to applications[J]. Renewable and Sustainable Energy Reviews, 2020: 110473. [Google Scholar]
  31. Zhao Wei, Zhang Jiantao, He Ming. Design and analysis of a micro piezoelectric vibration energy generator[J]. Small and Special Electrical Machines, 2020, 48(07):7-11. [Google Scholar]
  32. Ottman G K, Hofmann H F. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J]. IEEE Transactionson Power Electronics, 2002, 17(5):669-676. [Google Scholar]
  33. Guo S, Lee H. An efficiency-enhanced CMOS rectifier withunbalanced-biased comparators for transcutaneous-powered high-current implants[J]. IEEE Journal Solid-State Circuits, 2009, 44(6):1796. [Google Scholar]
  34. Ramadass Y K, Chandrakasan A P. An efficient pie-zoelectric energy harvesting interface circuit using a bias-flip rectifier and share inductor[J]. IEEE Journal of Solid-State Circuit, 2010, 45(1):189-204. [Google Scholar]
  35. Guyomar D, Badel A, LefeuvreE E, et al. Toward en-ergy harvesting using active materials and con-version im-provementby nonlinear processing[J]. IEEE Transaction on Ultrasonic Control, 2005, 52(4):584-595. [Google Scholar]
  36. LiangG J, Liao W H. Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems[J]. IEEE Transactions on Industri-al Electronics, 2012, 59(4):1950-1960. [Google Scholar]
  37. Berdy D F, Srisungsitthisunti P, Jung B, et al. Low-frequency meandering piezoelectric vibration energy harvester[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012, 59(5):846-858. [PubMed] [Google Scholar]
  38. Li Yani, Zhu Zhangming, Yang Yintang , et al. An ultra-low-vol-tage self-powered energy harvesting rectifier with digital switch control[J]. IEICE Electrics Express, 2015, 12(3): 1–7. [Google Scholar]
  39. Xu Yifan, Feng Danquin. The study of bioelectricity on the trees and their applications as power sources[C]//2012 Asia-Pacific, Power and Energy Engineering Conference(APPEEC), 2012: 1–5. [Google Scholar]
  40. Prijic A, Vracar L, Vuckovic D, et al. Thermal energy harvesting wireless sensor node in aluminum core PCB technology[J]. IEEE Sensors, 2015, 15(1):337-345. [Google Scholar]
  41. Liu Huifang, Cao Chongdong, Zhao Qiang, Ma Kai, Gu Yanling. The Method of Vibration Energy Collection and Storage of Cantilever Gallium-Iron Alloy[J]. Transactions of China Electrotechnical Society, 2020, 35(14):3137-3146. [Google Scholar]
  42. Rong Xun, Chen Zhimin, Cao Guangzhong. The design of a low-power circuit for ultra-low energy harvest[J]. Application Of Electronic Technique, 2016, 42(07): 42-45+49. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.