Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 15004
Number of page(s) 7
Section Thermal Comfort
DOI https://doi.org/10.1051/e3sconf/202124615004
Published online 29 March 2021
  1. ASHRAE Standard 55–2017, Thermal Environmental Conditions for Human Occupancy. [Google Scholar]
  2. Fanger, P.O. (1974). Komfort cieplny. Arkady, Warszawa. [Google Scholar]
  3. Krawczyk D.A., Gładyszewska-Fiedoruk K., Rodero A., The analysis of microclimate parameters in the classrooms located in different climate zones, Applied Thermal Engineering 113 (2017) 1088–1096. http://dx.doi.org/10.1016/j.applthermaleng.201611.089 [Google Scholar]
  4. Fang Z., Zhang S., Cheng Y., Fong, A.M.L., Oladokun M., Lin Z., Wua H., Field study on adaptive thermal comfort in typical air conditioned classrooms, Building and Environment 133 (2018) 73–82. https://doi.org/10.1016/j.buildenv.2018.02.005 [Google Scholar]
  5. Merabtine A., Maalouf C., Waheed Hawila A., Martaj N. Polidori G., Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study. Building and Environment 145 (2018) 62–76, https://doi.org/10.1016/j.buildenv.2018.09.015 [Google Scholar]
  6. Singh M., Kumar S., Ooka R., Rijal H., Gupta G., Kumar A., Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India, Building and Environment 128 (2018) 287–304. https://doi.org/10.1016/j.buildenv.2017.11.031 [Google Scholar]
  7. Majewski, G., Orman, Ł.J., Telejko, M., Radek, N., Pietraszek, J., Dudek, A. (2020). Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment. Energies, 13(8). 1973. 10.3390/en13081973. [CrossRef] [PubMed] [Google Scholar]
  8. Vilcekova S., Meciarova, L.; Burdova, E.K.; Katunska, J.; Kosicanova, D.; Doroudiani, S. Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. Building and Environment 2017, 120, 29–40. [Google Scholar]
  9. Aghniaey, S.; Lawrence, T.W.; Sharpton, T.N.; Douglass, S.P.; Oliver, T.; Sutter, M. Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response.Building and Environment 2019, 148, 488–497. [Google Scholar]
  10. Kuchen, E.; Fisch, M.N. Spot Monitoring: Thermal comfort evaluation in 25 o_ce buildings in winter.Building and Environment 2009, 44, 839–847. [Google Scholar]
  11. Hens, H.S.L.C. Thermal comfort in o_ce buildings: Two case studies commented. Building and Environment 2009, 44, 1399–1408. [Google Scholar]
  12. Moujalled, B.; Cantin, R.; Guarracino, G. Comparison of thermal comfort algorithms in naturally ventilated o_ce buildings. Energy Build. 2008, 40, 2215–2223. [Google Scholar]
  13. Ricciardi, P.; Buratti, C. Thermal comfort in open plan o_ces in northern Italy: An adaptive approach. Building and Environment 2012, 56, 314–320. [Google Scholar]
  14. Teli D., James, P.A.B., Jentsch M., Thermal comfort in naturally ventilated primary school classrooms. Building Research & Information 42 (2013) 301–316. https://doi.org/10.1080/09613218.2013.773493 [Google Scholar]
  15. Indraganti, M.; Ooka, R.; Rijal, H.B. Thermal comfort in o_ces in summer: Findings from a field study under the ‘setsuden’ conditions in Tokyo, Japan. Building and Environment 2013, 61, 114–132. [Google Scholar]
  16. Kwok, A. G., Chun, C., Thermal comfort inJapanese schools. Solar Energy 74 (2003) 245–252. https://doi.org/10.1016/S0038–092X(03)00147–6 [Google Scholar]
  17. Hwang, R.-L.; Lin, T.-P.; Kuo, N.-J., Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings 38 (2006) 53–62. https://doi.org/10.1016/j.enbuild.2005.05.001 [Google Scholar]
  18. Zhang G., Zheng C., Yang W., Zhang Q., Moschandreas D.J. , Thermal Comfort Investigation of Naturally Ventilated Classrooms in a Subtropical Region. Indoor and Built Environment 16 (2007) 148–158. https://doi.org/10.1177/1420326X06076792 [Google Scholar]
  19. Dear de R., Kim J., Candido C., Deuble M., Adaptive thermal comfort in Australian school classrooms. Building Research & Information 43 (2015) 383–398. https://doi.org/10.1080/09613218.2015.991627 [Google Scholar]
  20. Kim J., Dear de R., Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment 127 (2018) 13–22. https://doi.org/10.1016/j.buildenv.2017.10.031 [Google Scholar]
  21. Majewski, G., Telejko, M., Orman, Ł.J. Preliminary results of thermal comfort analysis in selected buildings. Proc. of Conf. on Interdisciplinatry Problems in Environmental Protection and Engineering (EKO-DOK), Poland, E3S Web of Conferences, 17, 00056, 2017. https://doi.org/10.1051/e3sconf/20171700056. [Google Scholar]
  22. Guevara G.,Soriano G., Mino-Rodriguez I., Thermal comfort in university classrooms: An experimental study in the tropics. Building and Environment 187 (2021) https://doi.org/10.1016/j.buildenv.2020.107430 [Google Scholar]
  23. Jindal A., Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Building and Environment 142 (2018) 34–46. https://doi.org/10.1016/j.buildenv.2018.05.051 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.