Open Access
E3S Web Conf.
Volume 247, 2021
International Conference on Efficient Production and Processing (ICEPP-2021)
Article Number 01074
Number of page(s) 6
Published online 01 June 2021
  1. D.H. Meadows, J. Randers, D.L. Meadows, W.W. Behrens. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. NY, Universe Books. 211 P. (1972). ISBN 0876631650. [Google Scholar]
  2. D.H. Meadows et al. The limits to growth. 30 years later: A study guide. 3rd ed. 342 P. (2007). ISBN 978-5-94628-218-5. [Google Scholar]
  3. Digital society and the information age. URL: (Access date: 10.02.2021) [Google Scholar]
  4. How do agricultural wastes harm the environment? (Access date: 10.03.2021) [Google Scholar]
  5. A.E. Bolgov. The impact of the agro-industrial complex on the environment. The successes of modern natural science. No. 2. - p. 95-96. (2004). [Google Scholar]
  6. S.R. Bayramukova, V.Yu. Mesharova. The impact of enterprises of the agro-industrial complex on the environment. https://Users/8523~1/AppData/Local/Temp/vozdeystvie-predpriyatiy-agropromyshlennogo-kompleksa-na-okruzhayuschuyu-sredu.pdf [Google Scholar]
  7. I. Novitsky Agricultural pollution of the environment. https://selkhozportal.rf/articles/selskohozyajstvennoe-zagryaznenie-okruzhayushhej-sredy (Access date: 10.03.2021)/ [Google Scholar]
  8. Impact of agriculture on the environment. (Access date: 10.03.2021) [Google Scholar]
  9. Digital Society. (Access date: 12.03.2021) [Google Scholar]
  10. A.F. MacKenzie, M.X. Fan, F. Cadrin. Nitrous Oxide Emission in Three Years as Affected by Tillage, Corn-Soybean-Alfalfa Rotations, and Nitrogen Fertilization. Journal of Environmental Quality. 27(3), pp. 698-703. (1998). DOI: 10.2134/jeq1998.00472425002700030029x [Google Scholar]
  11. A.G. Chuvakhova, T.V. Karpenko. Digital technologies and their impact on the environment. (2020). URL: (Access date: 10.02.2021) [Google Scholar]
  12. A.V. Keshelava V.G. Budanov, V.Yu. Rumyantsev et al. Introduction to the Digital Economy: On the Threshold of the Digital Future. V. 1, Monograph. M. 44 p. (2017). [Google Scholar]
  13. E. Montesinos. Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology. 6(4), pp. 245-252. (2003). DOI: 10.1007/s10123-003-0144-x. [Google Scholar]
  14. Agricultural waste concept, generation utilization and management. Nigerian Journal of Technology. 35(4), pp. 957-964. (2016). DOI: 10.4314/njt.v35i4.34 [CrossRef] [Google Scholar]
  15. An overview of digital technologies for the agro- industrial complex: from GIS to the Internet of things. (2020). URL: (Access date: 12.02.2021) [Google Scholar]
  16. Hands Free Hectare HFH. (Access date: 10.02.2021) [Google Scholar]
  17. N.M. Trendov, S. Varas and M. Zeng. Digital technologies in agriculture and rural areas. Food and Agriculture Organization of the United Nations. Rome. (2019). (Access date: 15.02.2021) [Google Scholar]
  18. E.P. Gusakova, A.V. Shchutskaya, E.P. Afanaseva. Digital Technologies as a Tool for Solving Basic Industrial Problems in the Agro-Industrial Complex. Digital Age: Chances, Challenges and Future. (2020). DOI: 10.1007/978-3-030-27015-5_22. [Google Scholar]
  19. A. Kamilaris 1 and F.X. Prenafeta-Boldü. Deep Learning in Agriculture: A Survey. Institute for Food and Agricultural Research and Technology (IRTA). (Access date: 14.02.2021) [Google Scholar]
  20. X. Song, G. Zhang, F. Liu, D. Li, Y. Zhao & J. Yang, J. Modeling Spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), pp. 734-748. (2016). [Google Scholar]
  21. C. Potena, D. Nardi & A. Pretto. Fast and accurate crop and weed identification with summarized train sets for precision agriculture. International Conference on Intelligent Autonomous Systems. Shanghai, China: Springer, Cham, pp. 105-121. (2016). [Google Scholar]
  22. S. Liaghat & S.K. Balasundram. A review: The role of remote sensing in precision agriculture. American journal of agricultural and biological sciences, 5(1), pp. 50-55. (2010). [Google Scholar]
  23. N. Kussul, M. Lavreniuk, S. Skakun & A. Shelestov. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters. 14(5), pp. 778-782. (2017). [CrossRef] [Google Scholar]
  24. M. Petre, A. Teodorescu. Biotechnology of Agricultural Wastes Recycling Through Controlled Cultivation of Mushrooms. (2012). DOI: 10.5772/29998 [Google Scholar]
  25. Investigating the Environmental Effects of Agriculture Practices on Natural Resources. USGS. (2007), URL: (Access date: 10.02.2021) [Google Scholar]
  26. S. Mittal & M. Mehar. How mobile phones contribute to growth of small farmers? evidence from India. Quarterly Journal of International Agriculture. 51(3), pp. 227-244. (2012). [Google Scholar]
  27. Program Digital Economy of the Russian Federation. (Access date: 10.02.2021) [Google Scholar]
  28. N. Orlova. Digital technologies in the agrifoodsector: key challenges in Russia. Forum 2020 “Digital transformation-towards sustainable food value chains in Eurasia”. (2020). (Access date: 10.02.2021) [Google Scholar]
  29. Development strategy of the agro-industrial and fishery complexes of the Russian Federation for the period up to 2030. (Access date: 20.02.2021) [Google Scholar]
  30. M.V. Tiranova. Errors in the principles of the formation of the environmental policy of the Russian Federation. Modern science: actual problems of theory and practice. Series: Economics and Law. No 5, pp. 39-41. (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.