Open Access
Issue
E3S Web Conf.
Volume 251, 2021
2021 International Conference on Tourism, Economy and Environmental Sustainability (TEES 2021)
Article Number 02033
Number of page(s) 7
Section Environmental Ecological Analysis and Sustainable Development Research
DOI https://doi.org/10.1051/e3sconf/202125102033
Published online 15 April 2021
  1. Siegel, R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64(1):9–29. PubMed PMID:24399786. [Google Scholar]
  2. Kirkwood, J.M., Butterfield L.H., Tarhini A.A., Zarour H., Kalinski P., Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309–335. doi: 10.3322/caac.20132 [Google Scholar]
  3. Gajewski, T.F., Schreiber H., Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–1022. doi: 10.1038/ni.2703 [Google Scholar]
  4. Fox, B.A., Schendel D.J., Butterfield L.H., et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med 2011;9(1):214. PubMed PMID:22168571. [Google Scholar]
  5. Scanlan, M.J., Gure A.O., Jungbluth A.A., Old L.J., Chen, Y.T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32. doi: 10.1034/j.1600-065x.2002.18803.x [Google Scholar]
  6. Q. Zhao, O.L. Caballero, A.J.G. Simpson, R.L. Strausberg Differential evolution of MAGE genes based on expression pattern and selection pressure PLoS One, 7 (2012), p. e48240 [Google Scholar]
  7. B.J. Stevenson, C. Iseli, S. Panji, M. Zahn-Zabal, W. Hide, L.J. Old, et al. Rapid evolution of cancer/testis genes on the X chromosome BMC Genomics, 8 (2007), p. 129 [Google Scholar]
  8. Ross, M.T., Grafham D.V., Coffey A.J., et al. The DNA sequence of the human X chromosome. Nature. 2005;434(7031):325–337. doi: 10.1038/nature03440 [Google Scholar]
  9. L.G. Almeida, N.J. Sakabe, A.R. DeOliveira, M.C.C. Silva, A.S. Mundstein, T. Cohen, et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens Nucleic Acids Res., 37 (2009), pp. D816–D819 [Google Scholar]
  10. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., and Boon, T. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (New York, N.Y 254, 1643–1647 PMID 1840703 [Google Scholar]
  11. Anil Suri (2006) Cancer testis antigens - their importance in immunotherapy and in the early detection of cancer, Expert Opinion on Biological Therapy, 6:4, 379–389, DOI: 10.1517/14712598.6.4.379 [Google Scholar]
  12. Chen, Y. T., Stockert, E., Chen, Y., Garin-Chesa, P., Rettig, W. J., van der Bruggen, P., Boon, T., and Old, L.J. (1994) Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America 91, 1004–1008 PMID 8302824 [Google Scholar]
  13. De Smet, C., Lurquin, C., van der Bruggen, P., De Plaen, E., Brasseur, F., and Boon, T. (1994) Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39, 121–129 PMID 8276455 [Google Scholar]
  14. Boël, P., Wildmann C., Sensi M.L., et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 1995;2(2):167–175. doi: 10.1016/s1074-7613(95)80053-0 [Google Scholar]
  15. De Backer, O., Arden K.C., Boretti M., et al. Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Res. 1999;59(13):3157–3165. [Google Scholar]
  16. Chen, Y.T., Gure A.O., Tsang S., et al. Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc Natl Acad Sci USA 1998;95(12):6919–6923. PubMed PMID:9618514. [Google Scholar]
  17. Li, G., Miles A., Line A., Rees RC. Identification of tumour antigens by serological analysis of cDNA expression cloning. Cancer Immunol Immunother 2004;53(3):139–143. PubMed PMID:14722670. [Google Scholar]
  18. Chen, Y. T., Scanlan, M. J., Sahin, U., Tureci, O., Gure, A. O., Tsang, S., Williamson, B., Stockert, E., Pfreundschuh, M., and Old, L. J. (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proceedings of the National Academy of Sciences of the United States of America 94, 1914–1918 PMID 9050879 [Google Scholar]
  19. Raza, A., Merhi M., Inchakalody V.P., et al. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl Med. 2020;18(1):140. Published 2020 Mar 27. doi: 10.1186/s12967-020-02306-y [Google Scholar]
  20. Türeci, O., Sahin U., Schobert I., et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res. 1996;56(20):4766–4772. [Google Scholar]
  21. Alsheimer, M., Drewes T., Schütz W., Benavente R. The cancer/testis antigen CAGE-1 is a component of the acrosome of spermatids and spermatozoa. Eur J Cell Biol. 2005;84(2-3):445–452. doi: 10.1016/j.ejcb.2004.11.003 [Google Scholar]
  22. Wobus, M., List C., Dittrich T., et al. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer. 2015;136(1):44–54. doi: 10.1002/ijc.28960 [Google Scholar]
  23. Zhu, F., Bo H., Liu G., Li R., Liu Z., Fan L. SPANXN2 functions a cell migration inhibitor in testicular germ cell tumor cells. PeerJ. 2020;8:e9358. Published 2020 Jun 23. doi: 10.7717/peerj.9358 [Google Scholar]
  24. Mahmoud AM. Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy. 2018;10(9):769–778. doi: 10.2217/imt-2017-0179 [Google Scholar]
  25. Atanackovic, D., Blum I., Cao Y., et al. Expression of cancer-testis antigens as possible targets for antigen-specific immunotherapy in head and neck squamous cell carcinoma. Cancer Biol Ther. 2006;5(9):1218–1225. doi: 10.4161/cbt.5.9.3174 [Google Scholar]
  26. Chen, Y.T., Ross D.S., Chiu R., et al. Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS One. 2011;6(3):e17876. Published 2011 Mar 18. doi: 10.1371/journal.pone.0017876 [Google Scholar]
  27. Maheswaran, E., Pedersen C.B., Ditzel H.J., Gjerstorff MF. Lack of ADAM2, CALR3 and SAGE1 Cancer/Testis Antigen Expression in Lung and Breast Cancer. PLoS One. 2015;10(8):e0134967. Published 2015 Aug 7. doi: 10.1371/journal.pone.0134967 [Google Scholar]
  28. Lim, J., Goriely A., Turner G.D., et al. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol. 2011;224(4):473–483. doi: 10.1002/path.2919 [Google Scholar]
  29. Chen, Y.T., Panarelli N.C., Piotti K.C., Yantiss, R.K. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions. Cancer Immunol Res. 2014;2(5):480–486. doi: 10.1158/2326-6066.CIR-13-0124 [Google Scholar]
  30. Faramarzi, S., Ghafouri-Fard S. Melanoma: a prototype of cancer-testis antigen-expressing malignancies. Immunotherapy. 2017;9(13):1103–1113. doi: 10.2217/imt-2017-0091 [Google Scholar]
  31. Gezgin, G., Luk S.J., Cao, J. et al. PRAME as a potential target for immunotherapy in metastatic uveal melanoma. JAMA Ophthalmol. 135(6), 541–549 (2017). [Google Scholar]
  32. Svobodovâ, S., Browning J., Macgregor, D. et al. Cancer-testis antigen expression in primary cutaneous melanoma has independent prognostic value comparable to that of Breslow thickness, ulceration and mitotic rate. Eur. J. Cancer 47(3), 460–469 (2011). [Google Scholar]
  33. Zhang, Y., Zhang Y., Zhang L. Expression of cancer-testis antigens in esophageal cancer and their progress in immunotherapy. J Cancer Res Clin Oncol. 2019;145(2):281–291. doi: 10.1007/s00432-019-02840-3 [Google Scholar]
  34. Gjerstorff, M.F., Pohl M., Olsen K.E., Ditzel, H.J. Analysis of GAGE, NY-ESO-1 and Sp17 cancer/testis antigen expression in early stage non-small cell lung carcinoma. BMC Cancer. 2013;13:466. Published 2013 Oct 8. doi: 10.1186/1471-2407-13-466 [Google Scholar]
  35. Xie, K., Fu C., Wang S., et al. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J Ovarian Res. 2019; 12(1):1. Published 2019 Jan 4. doi: 10.1186/s13048-018-0475-z [Google Scholar]
  36. Veit, J.A., Heine D., Thierauf J., et al. Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck. Head Neck. 2016;38(7):1008–1016. doi: 10.1002/hed.24403 [Google Scholar]
  37. Laban, S., Atanackovic D., Luetkens T., et al. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer. Int J Cancer. 2014;135(5):1142–1152. doi: 10.1002/ijc.28752 [Google Scholar]
  38. Li, Y., Li J., Wang Y., et al. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett. 2017;399:64–73. doi: 10.1016/j.canlet.2017.02.031 [Google Scholar]
  39. Yao, J., Caballero O.L., Yung W.K., et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–379. doi: 10.1158/2326-6066.CIR-13-0088 [Google Scholar]
  40. Caron, C., Lestrat C., Marsal S., et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene. 2010;29(37):5171–5181. doi: 10.1038/onc.2010.259 [Google Scholar]
  41. Pellon-Maison, M., Montanaro M.A., Lacunza E., et al. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line. PLoS One. 2014;9(6):e100896. Published 2014 Jun 26. doi: 10.1371/journal.pone.0100896 [Google Scholar]
  42. De Smet, C., Lurquin C., Lethe B., Martelange V., Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999;19(11):7327–7335. doi: 10.1128/MCB.19.11.7327. [Google Scholar]
  43. Karpf AR. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics. 2006;1(3):116–120. doi: 10.4161/epi.1.3.2988. [Google Scholar]
  44. De Smet, C., De Backer O., Faraoni I., Lurquin C., Brasseur F., Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci US A. 1996;93(14):7149–7153. doi: 10.1073/pnas.93.14.7149 [Google Scholar]
  45. Woloszynska-Read, A., James S.R., Link P.A., Yu J., Odunsi K., Karpf, A.R. DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immun. 2007;7:21. Published 2007 Dec 21. [Google Scholar]
  46. Steele, N., Finn P., Brown R., Plumb, J.A. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer. 2009;100(5):758–763. doi: 10.1038/sj.bjc.6604932 [Google Scholar]
  47. Rao, M., Chinnasamy N., Hong J.A., et al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res. 2011;71(12):4192–4204. doi: 10.1158/0008-5472.CAN-10-2442 [Google Scholar]
  48. Yazarlou, F., Mowla S.J., Oskooei V.K., Motevaseli E., Tooli L.F., Afsharpad M., Nekoohesh L., Sanikhani N.S., Ghafouri-Fard S., Modarressi MH Cancer Manag Res. 2018; 10(1):5373–5381. [Google Scholar]
  49. Cui, Z., Chen Y., Hu M., Lin Y., Zhang S., Kong L., Chen Y Clin Chim Acta. 2020 Apr; 503(1):203–209. [Google Scholar]
  50. Kothandan, V.K., Kothandan S., Kim D.H., et al. Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel). 2020;8(2):172. Published 2020 Apr 8. doi: 10.3390/vaccines8020172 [Google Scholar]
  51. Wei, X., Chen F., Xin K., et al. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol. 2019;12(5):733–738. doi: 10.1016/j.tranon.2019.02.008 [Google Scholar]
  52. Thomas, R., Al-Khadairi G., Roelands J., Hendrickx W., Dermime S., Bedognetti D., Decock J. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947. [Google Scholar]
  53. Yamaguchi, H., Tanaka F., Ohta M., Inoue H., Mori M. Identification of HLA-A24-restricted CTL epitope from cancer-testis antigen, NY-ESO-1, and induction of a specific antitumor immune response. Clin Cancer Res. 2004;10:890–896. [Google Scholar]
  54. Eikawa, S., Kakimi K., Isobe M., Kuzushima K., Luescher I., Ohue Y., Ikeuchi K., Uenaka A., Nishikawa H., Udono H. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide. Int J Cancer. 2013;132:345–354. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.