Open Access
Issue
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 01062
Number of page(s) 6
Section Power Control Technology and Smart Grid Application
DOI https://doi.org/10.1051/e3sconf/202125201062
Published online 23 April 2021
  1. Gao, H.Y. (2019) Study on economic operation and optimal control strategy of transformer. Liaoning: Liaoning University of Technology. [Google Scholar]
  2. Zhang, Y.P., Hu H.Y., Liu Q.Z., et al. (2018) Typical fault analysis and online monitoring technology for transformers. Safety Health & Environment, 09:11–14. [Google Scholar]
  3. Zhao, Z.G., Li, G.F., Li, J.Z., et al. (2014) Analyzing the short-cinuit withstanding ability of large power transformer based the FEM method. High Voltage Engineering, 40(10): 3214–3220. [Google Scholar]
  4. Li, X.L., Huang, H., Chen, X.X., et al. (2008) Design of on-line monitoring system for power transformer based on vibration analysis method. Transformer, 45(12): 60–64. [Google Scholar]
  5. Chen, J., Ding Q.L., Li Z. (2011) Feasibility study of vibration monitoring for wave spectrum on-line transformer. Transformer, 48(9): 32–34 [Google Scholar]
  6. Dedus, A.F., Dedus, F.F., Makhortykh, S.A., et al. (1995) Generalized spectral-analytic method: part I theoretical foundations. Proceedings of SPIE-The International Society for Optical Engineering, 2363. [Google Scholar]
  7. Huang, W.H. (1996) The principle, technology, and application of equipment fault diagnosis. Science Press, Beijing. [Google Scholar]
  8. Kang, P., Birtwhistle, D. (2001) Condition monitoring of power transformer on-load tap-changers. Part 1: Automatic condition diagnostics. IEE Proceedings-Generation, Transmission and Distribution, 148(4): 301–306. [Google Scholar]
  9. Gordy, T.D. (1950) Audible noise of power transformers. Electrical Engineering, 69(9): 800–805. [Google Scholar]
  10. Ji, S.C., Wang, J.D., Li, Y.M. (2006) Research on axial vibration characteristics of transformer windings under steady condition. Advanced Technology of Electrical Engineering and Energy, 01: 35–38. [Google Scholar]
  11. Swihart, D.O., Wright, D.V. (1976) Dynamic stiffness and damping of transformer pressboard during axial short circuit vibration. IEEE Transactions on Power Apparatus & Systems, 95(2): 721–730. [Google Scholar]
  12. Swihart, D.O., Mccormick, L.S. (1980) Short circuit vibration analysis of a shell form power transformer. IEEE Transactions on Power Apparatus Systems, 99(2): 800–810. [Google Scholar]
  13. Uchiyama, N., Saito, S., Kashiwakura, M., et al. (2000) Axial vibration analysis of transformer windings with hysteresis of stress-and-strain characteristic of insulating materials. Power Engineering Society Summer Meeting, IEEE. [Google Scholar]
  14. Watts, G.B. (1963) A mathematical treatment of the dynamic behaviour of a power-transformer winding under axial short-circuit forces. Proceedings of the Institution of Electrical Engineers, 110(3): 551–560. [Google Scholar]
  15. Hiraishi, K., Hori, Y., Shida, S., et al. (1971) Mechanical strength of transformer windings under short-circuit conditions. IEEE Transactions on Power Apparatus Systems, 90(3): 2381–2390. [Google Scholar]
  16. Patel, M.R. (1973) Dynamic response of power transformers under axial short circuit forces part I-winding and clamp as individual components. Power Apparatus & Systems IEEE Transactions on, PAS-92(5): 1558–1566. [Google Scholar]
  17. Hori, Y., Okuyama, K. (1980) Axial vibration analysis of transformer windings under short circuit conditions. Power Apparatus & Systems IEEE Transactions on, PAS-99(2): 443–451. [Google Scholar]
  18. Chen, Z.M., Xu, J.X. (1990) Coil nonlinear vibration of large power transformer winding. Chinese Journal of Applied Mechanics, 01: 21–29. [Google Scholar]
  19. Wang, H.F., Wang, N.Q., Li, T.S. (2000) Axial nonlinear vibration of large power transformer winding. Power System Technology, 03: 42–38. [Google Scholar]
  20. Li, H.K., Li Y. (2010) Axial vibration modal analysis of transformer windings under different levels of pre-compression. Electric Machines and Control, 08: 98–101. [Google Scholar]
  21. Shen, M., Yin, Y., Wu J.D., et al. (2014) Experimental investigating on on-line monitoring of winding deformation of power transformers. Transactions of China Electrotechnical Society, 29(011): 184–190. [Google Scholar]
  22. Wang, Z.M., Gu, W.Y., Gu, X.A., et al. (2004) Mathematical model for electromagnetic vibration in large power transformer cores. Transformer, 41(006): 1–6. [Google Scholar]
  23. Hilgert, T., Vandevelde, L., Melkebeek, J. (2008) Comparison of magnetostriction models for use in calculations of vibrations in magnetic cores. IEEE Transactions on Magnetics, 44(6): p874–877. [Google Scholar]
  24. Xie, P.A. (2008) Study on application of vibration analysis to the condition monitoring of power transformers windings. Shanghai: Shanghai Jiao Tong University, [Google Scholar]
  25. Wang, F.H., Xu, J., Jin, Z.J., et al. (2010) Experimental research of vibration sweep frequency response analysis to detect the winding deformation of power transformer. Transmission and Distribution Conference and Exposition, IEEE. [Google Scholar]
  26. Wang, F.H., Jin, Z.J. (2011) Using the vibration frequency response analysis method to detect the winding deformation of power transformer. Power & Energy Society General Meeting, IEEE. [Google Scholar]
  27. Lu, Q.Y., Wang, F.H., Jin, Z.J. (2011) A variable frequency constant current power supply for vibration analysis method to detect the winding deformation of power transformer. Power & Energy Society General Meeting, IEEE. [Google Scholar]
  28. Li, Y., Zhou, W., Jing, Y., et al. (2011) Axial vibration analysis of power transformer active part under short-circuit. International Conference on Electrical Machines & Systems, IEEE. [Google Scholar]
  29. Li, H.K., Li, Y., Yu, X.H., et al. (2009) Axial vibrations modal analysis and computation of power transformer windings under different levels of pre-compression. 2009 International Conference on Applied Superconductivity and Electromagnetic Devices, IEEE. [Google Scholar]
  30. Meng, Z., Wang, Z. (2005) The analysis of mechanical strength of HV winding using finite element method. Part I Calculation of electromagnetic forces.39th International Universities Power Engineering Conference, 2004. UPEC 2004. IEEE. [Google Scholar]
  31. Meng, Z., Wang, Z. (2005) The analysis of mechanical strength of HV winding using finite element method. Part II Mechanical stress and deformation analysis. 39th International Universities Power Engineering Conference, 2004. UPEC 2004. IEEE. [Google Scholar]
  32. Hackl, A., Hamberger, P. (2010) Investigation of surface velocity pattern of power transformers tanks.XIX International Conference on Electrical Machines, IEEE. [Google Scholar]
  33. Omura, T., Yamaguchi, H., Ishigaki, Y., et al. (2015) 3D Vibration analysis on three phase transformer cores. Ieej Transactions on Fundamentals & Materials, 135(7):414–423. [Google Scholar]
  34. Mohammed, O.A. (2001) Numerical prediction of magnetostrictive behavior in non-oriented electrical steel sheets. Southeastcon IEEE. [Google Scholar]
  35. Mohammed, O.A., Liu, S., Abed, N. (2004) Study of the inverse magnetostriction effect on machine deformation. Southeastcon, IEEE. [Google Scholar]
  36. Lakshitha, N., Chandima, E. (2016) Finite element modelling of a transformer winding for vibration analysis. Power Engineering Conference. IEEE. [Google Scholar]
  37. Liu, H.S., Ma, L., Gu, Y.T., et al. (2014) Numerical investigation of mechanical and thermal dynamic properties of the industrial transformer. International Journal of Computational Methods, 11(supp01): 1344012. [Google Scholar]
  38. Ji, S.C., Cheng, J., Li, Y.M. (2005) Research on vibration characteristics of windings and core of oil-filled transformer. Journal of Xi'an Jiao Tong University, 39(6): 616–619. [Google Scholar]
  39. Li, H., Chen, J.B., Cao, C., et al. (2015) Simulation and test on vibration of power transformer windings based on multiple physics coupling method. Northeast Electric Power Technology, 2: 6–9. [Google Scholar]
  40. Wang, C.Z. (2006) Online monitoring and fault diagnosis of electrical equipment. Tsinghua University Press, Beijing. [Google Scholar]
  41. Rusov, A. (1998) Monitoring clamping forces in windings and cores of large power transformers using their vibration characteristics. Elektricheskie Stanzii, 6: 52. [Google Scholar]
  42. Poza, F., Marino, P., Otero, S., et al. (2006) Programmable electronic instrument for condition monitoring of in-service power transformers. IEEE Transactions on Instrumentation & Measurement, 55(2): 625–634. [Google Scholar]
  43. Garcia, B., Burgos, J.C., Alonso, A.M. (2005) Transformer tank vibration modeling as a method of detecting winding deformations part I: theoretical foundation. IEEE Transactions on Power Delivery, 21(1): 157–163. [Google Scholar]
  44. Yang, W.R., Dong, H.K., Yu, F.R., et al. (2016) On-line monitoring system for transformer vibration based on vibration method. Transducer and Microsystem Technology, 35(01): 93–95+99. [Google Scholar]
  45. Wang, Z.B., Zhou, J.P., Liu, J.M., et al. (2014) Design of portable transformer vibration monitoring and fault diagnosis system[J]. Computer Engineering, 40(011): 292–296. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.