Open Access
Issue
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 02025
Number of page(s) 5
Section Research and Development of Electrical Equipment and Energy Nuclear Power Devices
DOI https://doi.org/10.1051/e3sconf/202125202025
Published online 23 April 2021
  1. Yang, Y. L., Zhang, S. and Yin, Y. X. (2016). A modified elm algorithm for the prediction of silicon content in hot metal, Neural Comput & Applic 27(1): 241–247. DOI 10.1007/s00521–014–1775-x. [Google Scholar]
  2. Jiang Chaohui, Dong Menglin, Gui Weihua, et al. Two-dimensional prediction of silicon content in blast furnace hot metal based on Bootstrap. Acta Automatica Sinica, 2016, 42(5):715–723. [Google Scholar]
  3. Chen, J. (2001). Predictive system for blast furnaces by integrating a neural network with qualitative analysis, Engineering Applications of Artificial Intelligence 14(1): 77–85. DOI 10.1016/S0952–1976(00)00062–2. [Google Scholar]
  4. Yin Juping, Jiang Chaohui. Data-based prediction of silicon content in blast furnace hot metal[J]. Design and Research of Nonferrous Metallurgy, 2015, 36(03): 36–38+41. [Google Scholar]
  5. Sun Jie, Cui Tingting, Xu Bin, Wang Xingnan. Prediction of silicon content in molten iron based on IGA-ELM[J]. Journal of North China University of Technology (Natural Science Edition), 2020, 42(01): 25–29. [Google Scholar]
  6. Jian, L., Song, Y. Q., Shen, S. Q., Wang, Y. and Yin, H. Q. (2015). Adaptive least squares support vector machine predictor for blast furnace ironmaking process, ISIJ International 55(4): 845–850. DOI 10.2355/isijinternational.55.845. [Google Scholar]
  7. Ye Fei. Prediction method of blast furnace silicon content based on improved BP neural network [D]. Anhui University of Technology, 2019. [Google Scholar]
  8. Yang, Y. L., Zhang, S. and Yin, Y. X. (2016). A modified elm algorithm for the prediction of silicon content in hot metal, Neural Comput & Applic 27(1): 241–247. DOI 10.1007/s00521–014–1775-x. [Google Scholar]
  9. Li Zelong, Yang Chunjie, Liu Wenhui, Zhou Heng, Li Yuxuan. Prediction of silicon content in molten iron based on LSTM-RNN model[J]. CIESC Journal, 2018, 69(03): 992–997. [Google Scholar]
  10. Li S, Li W, Cook C, et al. Independently recurrent neura network (IndRNN): Building a longer and deeper rnn[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5457–5466. [Google Scholar]
  11. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[J]. arXiv, 2017. [Google Scholar]
  12. Dhar, S. and Dash, P. K. (2017). Adaptive threshold based new active islanding protection scheme for multiple PV based microgrid application, Iet Generation Transmission & Dis- tribution 11(1): 118–132. DOI 10.1049/iet-gtd.2016.0679. [Google Scholar]
  13. Acar, Y., Dogan, H., Basar, E. and Panayirci, E. (2016). Interpolation based pilot-aided channel estimation for STBC spatial modulation and performance analysis under imperfect CSI, Iet Communications 14(10): 1820–1828. DOI 10.1049/iet-com.2016.0151. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.