Open Access
Issue
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 02057
Number of page(s) 8
Section Research and Development of Electrical Equipment and Energy Nuclear Power Devices
DOI https://doi.org/10.1051/e3sconf/202125202057
Published online 23 April 2021
  1. Hansen, S.; Mirkouei, A.; Diaz, L. A. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renewable and Sustainable Energy Reviews. 2020, 118, DOI: 10.1016/j.rser.2019.109548. [Google Scholar]
  2. Shu, R.; Li, R.; Lin, B.; Wang, C.; Cheng, Z.; Chen, Y. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass and Bioenergy. 2020, 132, DOI: 10.1016/j.biombioe.2019.105432. [Google Scholar]
  3. Shi, N.; Xie, Y.; Yang, Y.; Xue, S.; Li, X.; Zhu, K.; Huan, D.; Peng, R.; Xia, C.; Lu, Y. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability. Materials for Renewable and Sustainable Energy. 2020, 9, (39), 815–827, DOI: 10.1007/s40243–020–0166–8. [Google Scholar]
  4. Rajendran, K. M.; Chintala, V.; Sharma, A.; Pal, S.; Pandey, J. K.; Ghodke, P. Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Materials Today Communications. 2020, 24, DOI: 10.1016/j.mtcomm.2020.100982. [Google Scholar]
  5. Du, D. X.; Axelbaum, R. L.; Law, C. K. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Symposium (International) on Combustion. 1991, 23, (1), 1501–1507, DOI: 10.1016/S0082–0784(06)80419–4. [Google Scholar]
  6. Liu, F.; Guo, H.; Smallwood, G. J.; Gülder, Ö. L. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NO x formation. Combust. Flame. 2001, 125, (1), 778–787, DOI: 10.1016/S0010–2180(00)00241–8. [Google Scholar]
  7. Hu, X.; Yu, Q.; Liu, J.; Sun, N. Investigation of laminar flame speeds of CH 4 /O 2 /CO 2 mixtures at ordinary pressure and kinetic simulation. Energy. 2014, 70, (3), 626–634, DOI: 10.1016/j.energy.2014.04.029. [Google Scholar]
  8. Wang, Y.; Yao, Q. Deposit morphology on SiC fibers in methane-acetylene/air laminar diffusion flames. Korean J. Chem. Eng. 2007, 24, (2), 305–310, DOI: 10.1007/s11814–007–5036-x. [Google Scholar]
  9. Glassman, I. Soot formation in combustion processes. Symposium (International) on Combustion. 1989, 22, (1), 295–311, DOI: 10.1016/S0082–0784(89)80036–0. [Google Scholar]
  10. Miller, J. H. The kinetics of polynuclear aromatic hydrocarbon agglomeration in flames. J. Houston Miller. 1991, 23, (1), 91–98, DOI: 10.1016/S0082–0784(06)80246–8. [Google Scholar]
  11. Saito, K.; Gordon, A. S.; Williams, F. A.; Stickle, W. F. A Study of the Early History of Soot Formation in Various Hydrocarbon Diffusion Flames. Combust. Sci. Technol. 1991, 80, (1–3), 103–119, DOI: 10.1080/00102209108951779. [Google Scholar]
  12. C., S. K.; Houston, M. J.; C., D. R.; Gary, M. W.; J., S. R. Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Smyth Kermit C.;Miller J.Houston;Dorfman Robert C.;Mallard W.Gary;Santoro Robert J. 1985, 62, (2), 157–181, DOI: 10.1016/0010–2180(85)90143–9. [Google Scholar]
  13. C., S. K.; E., H. J.; L., J. E.; M., P. W. Greatly enhanced soot scattering in flickering CH4/Air diffusion flames. Smyth Kermit C.;Harrington Joel E.;Johnsson Erik L.;Pitts William M. 1993, 95, (1–2), 229–239, DOI: 10.1016/0010–2180(93)90064-A. [Google Scholar]
  14. Richter, H.; Howard, J. B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energ. Combust. 2000, 26, (4), 565–608, DOI: 10.1016/S0360–1285(00)00009–5. [Google Scholar]
  15. Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, (4), 335–358, DOI: 10.1038/ngeo156. [Google Scholar]
  16. Wu, Z.; Kang, Y.; He, X. Numerical Study on the Morphology of a Re-Ignited Laminar Partially Premixed Flame with a Co-Axial Pilot Flame. J. Therm. Sci. 2020, 29, (2006), 90–97, DOI: 10.1007/s11630–019–1249–7. [Google Scholar]
  17. Kulkarni, T.; Bisetti, F. Surface morphology and inner fractal cutoff scale of spherical turbulent premixed flames in decaying isotropic turbulence. P. Combust. Inst. 2020, DOI: 10.1016/j.proci.2020.06.117. [Google Scholar]
  18. Si, M.; Cheng, Q.; Zhang, Q.; Wang, D.; Luo, Z. Simultaneous Reconstruction of the Temperature and Inhomogeneous Radiative Properties of Soot in Atmospheric and Pressurized Ethylene/Air Flames. Combust. Sci. Technol. 2020, 192, (10), 1946–1962, DOI: 10.1080/00102202.2019.1632299. [Google Scholar]
  19. Chu, H.; Han, W.; Cao, W.; Tao, C.; Raza, M.; Chen, L. Experimental investigation of soot morphology and primary particle size along axial and radial direction of an ethylene diffusion flame via electron microscopy. J. Energy Inst. 2019, 92, (5), 1294–1302, DOI: 10.1016/j.joei.2018.10.005. [Google Scholar]
  20. Gülder, Ö. L.; Snelling, D. R.; Sawchuk, R. A. Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Symposium (International) on Combustion. 1996, 26, (2), 2351–2358, DOI: 10.1016/S0082–0784(96)80064–6. [Google Scholar]
  21. Shim, S. H.; Shin, H. D. Transition morphology of deposits on SiC fibers in propane/air laminar diffusion flames. Combustion & Flame. 2002, 131, (1/2), 210–218, DOI: 10.1016/S0010–2180(02)00408-X. [Google Scholar]
  22. Sunderland, P. B.; Haylett, J. E.; Urban, D. L.; Nayagam, V. Lengths of laminar jet diffusion flames under elevated gravity. Combustion & Flame. 2008, 152, (1–2), 60–68, DOI: 10.1016/j.combustflame.2007.08.011. [Google Scholar]
  23. Camacho, J. R.; Choudhuri, A. R. Shapes of Elliptic Methane Laminar Jet Diffusion Flames. Journal of Engineering for Gas Turbines & Power. 2013, 128, (1), 1–7, DOI: 10.1115/1.2032449 [Google Scholar]
  24. Santoro, R. J.; Yeh, T. T.; Horvath, J. J.; Semerjian, H. G. The Transport and Growth of Soot Particles in Laminar Diffusion Flames. Combust. Sci. Technol. 1987, 53, (2–3), 89–115, DOI: 10.1080/00102208708947022. [Google Scholar]
  25. Beltrame, A.; Porshnev, P.; Merchan-Merchan, W.; Saveliev, A.; Fridman, A.; Kennedy, L. A.; Petrova, O.; Zhdanok, S.; Amouri, F.; Charon, O. Soot and NO formation in methane–oxygen enriched diffusion flames. Combust. Flame. 2001, 124, (1), 295–310, DOI: 10.1016/S0010–2180(00)00185–1. [Google Scholar]
  26. Han, W.; Ya, Y.; Chu, H.; Cao, W.; Yan, Y.; Chen, L. Morphological evolution of soot emissions from a laminar co-flow methane diffusion flame with varying oxygen concentrations. J. Energy Inst. 2020, 93, (1), 224–234, DOI: 10.1016/j.joei.2019.03.006. [Google Scholar]
  27. Wang, H. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame. 1997, 110, (1), 173–221, DOI: 10.1016/S0010–2180(97)00068–0. [Google Scholar]
  28. Krestinin, A. V. Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust. Flame. 2000, 121, (3), 1559–1566, DOI: 10.1016/S0010–2180(99)00167–4. [Google Scholar]
  29. Boehman, A. L.; Song, J.; Alam, M. Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters. Energ. Fuel. 2005, 19, (5), 1857–1864, DOI: 10.1021/ef0500585. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.