Open Access
E3S Web Conf.
Volume 253, 2021
2021 International Conference on Environmental and Engineering Management (EEM 2021)
Article Number 01055
Number of page(s) 7
Section Intelligent Environmental Monitoring and Quality Technology Assessment
Published online 06 May 2021
  1. J. D. Majumdar, “Underwater welding-present status and future scope,” Journal of Naval Architecture and Marine Engineering, 2006, vol. 3, pp. 38–47. [Google Scholar]
  2. J. Labanowski, D. Fydrych and G. Rogalski, "Underwater welding review,” Advances in Materials Sciences, 2008, vol. 8 , pp. 11–22. [Google Scholar]
  3. A. S. Azar and O. M. Akselsen, “Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures,” Journal of materials engineering and performance, 2013, vol. 22, pp. 673- 680. [Google Scholar]
  4. M. MOHIPOUR, “High Pressure Pipelines-trends for the New Millennium,” Proceedings of International Pipeline Conference, ASME. 2000, pp. 32–36. [Google Scholar]
  5. H. Fostervoll and R. Aune, “Remotely Controlled Hyperbaric Welding of Subsea Pipelines,” Pipeline Technology Conference, 2011, pp. 34–37. [Google Scholar]
  6. A. H. Varma, B. W. Russell, and B. Wallace, “Largescale rotating bending fatigue tests for offshore pipe connections,” Experimental Mechanics, vol. 37, pp. 147–153, Jun 1997. [Google Scholar]
  7. S.H. Hashemi and D. Mohammadyani. “Characterisation of weldment hardness, impact energy and microstructure in API X65 steel,” International Journal of Pressure Vessels and Piping, 2012, vol. 98, pp. 8–15. [Google Scholar]
  8. S. Shanmugam, R. D. K. Misra and J. Hrtmann. “Microstructure of high strength niobium-containing pipeline steel,” Material Science and Engineering A, 2006, vol. 441, pp. 215–229. [Google Scholar]
  9. SES, “fatigue testing,” Stress Engineering Services INC. 2010, vol. 2010, available. [Google Scholar]
  10. H. C. Fang. “Safety and reliability analysis of long distance oil and gas pipeline,” Beinjing: Petroleum Industry Press, 2002. [Google Scholar]
  11. H.C. Fang and G. M. Chen, “Reliability analysis of offshore structures in ice area,” Beinjing: Petroleum Industry Press, 2000. [Google Scholar]
  12. W. X. Yao, “Structural fatigue life analysis,” Beinjing: National Defense Industry Press, 2003. [Google Scholar]
  13. S. J. Zhang and D. Y. Shi, “Fatigue and fracture of offshore structures,” Harbin, Harbin Engineering University Press, 2004. [Google Scholar]
  14. J. Y. Pan, “Fatigue of welded structures: a review of fatigue tests at home and abroad,” China Railway Science, 1983, vol. 1 , pp. 73 – 84. [Google Scholar]
  15. H. Motohashi, N. Hagiwara and T. Masuda, “Tensile properties and microstructure of weld metal in MAG welded X80 pipeline steel,” Welding International, 2005, vol. 19, pp. 100–108. [Google Scholar]
  16. R. Song, “Overview of processing microstructure and mechanical properties of ultrafine grained bcc steels,” Materials Science and Engineering: A, 2006, vol. 441, pp. 1–17. [Google Scholar]
  17. Y. H. Hu, D. Y. Tang and Z. T. Fang, “Research status and development trend of full scale fatigue test technology for offshore pipeline,” Petroleum Engineering Construction, 2013, vol. 39, pp. 1–6. [Google Scholar]
  18. D. Y. Tang, Z. T. Fang and Y. H. Hu, “Development of full scale fatigue testing machine for offshore pipeline,” Petroleum Engineering Construction, 2013, vol. 39, pp. 20–25. [Google Scholar]
  19. J. C. Newman and I. S. Raju, “An empirical stress— intensity factor equation for the surface crack,” Engineering Fracture M echanics, 1981, vol. 15, pp. 185–192. [Google Scholar]
  20. X. B. Lin and R. A. Smith, “Numerical analysis of fatigue growth of external surface cracks in pressurized cylinders,” Int.Journal of Pressure Vessels and Piping, 1997, vol. 71, pp. 293–300. [Google Scholar]
  21. J. M. Stephen and G. R. Razmjoo, “Fatigue performance of large girth welded steel tubes,” 17th International Conference on Offshore Mechanics and Arctic Engineering, OMAE98-23(55). [Google Scholar]
  22. J. M. Stephen, B. S. Julian and G. R. Razmjoo, “An investigation of the fatigue performance of riser girth welds,” 25th International Conference on Offshore Mechanics and Arctic Engineering, OMAE, 2006- 92(315). [Google Scholar]
  23. K. Hasegawa, K. Sakata and K. Miyazaki, “Fatigue strength for pipes with allowable flaws and design curve,” International Journal of Pressure Vessels and Piping, 2002, vol. 79, pp. 37–44. [Google Scholar]
  24. G. F. Miscow, P. E. V. de Miranda and T. A. Netto, “Techniques to characterize fatigue behavior of full size drill pipes,” International Journal of Fatigue, 2004, vol. 26, pp. 575–584. [Google Scholar]
  25. T. A. Netto, M. I. Lourenco and A. Botto, “Fatigue performance of pre-strained pipes with girth weld defects: Full-scale experiments and analyses,” International Journal of Fatigue, 2008, vol. 30, pp. 767–778. [Google Scholar]
  26. Official homepage of Norwegian University of science and technology. [Google Scholar]
  27. Y.L. Li, C. J. Zhuang and Y.R. Feng, “Fatigue life analysis and prediction of oil and gas pipeline,” Oil and gas storage and transportation, 2004 , vol. 23, pp. 41 - 43. [Google Scholar]
  28. C. J. Zhuang, “Full-scale fatigue test on X60 spiral linepipe,” 25th International Conference on Offshore Mechanics and Arctic Engineering, OMAE,2006- 92031. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.