Open Access
Issue |
E3S Web Conf.
Volume 253, 2021
2021 International Conference on Environmental and Engineering Management (EEM 2021)
|
|
---|---|---|
Article Number | 02095 | |
Number of page(s) | 5 | |
Section | Big Data Environment Management Application and Industry Research | |
DOI | https://doi.org/10.1051/e3sconf/202125302095 | |
Published online | 06 May 2021 |
- L. Lin, Z. Rong Fu, X. Ting Xu, S. Cai Wu, “Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease,” Microsc Res Tech, vol. 78, 2015, pp. 416–424. [CrossRef] [PubMed] [Google Scholar]
- L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka, C.M. Christopher, P.S. Aisen, R.C. Petersen, “Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects,” Ann Neurol, vol. 65, 2009, pp. 403–413. [CrossRef] [PubMed] [Google Scholar]
- L. Lin, G. Zhang, S. Cai Wu, “Research progress on heterogeneity of Alzheimer's disease based on MRI,” Chinese Medical Equipment Journal, vol. 41, 2020, pp. 96–100. [Google Scholar]
- D. Ferreira, A. Nordberg, E. Westman, “Biological subtypes of Alzheimer disease: A systematic review and meta-analysis,” Neurology, vol. 94, 2020, pp. 436–448. [CrossRef] [PubMed] [Google Scholar]
- B. Wen Zhang, L. Lin, S. Cai Wu, “Application of deep learning to mild cognitive impairment conversion and classification,” Chinese Medical Equipment Journal, vol. 38, 2017, pp. 105–111. [Google Scholar]
- M. E. Murray, N. R. Graff-Radford, O.A. Ross, R.C. Petersen, R. Duara, D.W. Dickson, “Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study,” The Lancet Neurology, vol. 10, 2011, pp. 785–796. [CrossRef] [PubMed] [Google Scholar]
- J. L. Whitwell, K. A. Josephs, M. E. Murray, K. Kantarci, S. A. Przybelski, S. D. Weigand, “MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study,” Neurology, vol. 71, 2008, pp. 743–749. [CrossRef] [PubMed] [Google Scholar]
- J. L. Whitwell, D. W. Dickson, M. E. Murray, S. D. Weigand, N. Tosakulwong, M. L. Senjem, “Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study,” Lancet Neurol, vol. 11, pp. 868–877. [Google Scholar]
- B. Zhang, L. Lin, S. Wu. “A Review of Brain Atrophy Subtypes Definition and Analysis for Alzheimer's Disease Heterogeneity Studies.” J Alzheimers Dis. 2021, In press [Google Scholar]
- M. Soo Byun, S. E. Kim, J. Park, Y. Dahyun, Y. Min Choe, B. Kyung Sohn, “Heterogeneity of Regional Brain Atrophy Patterns Associated with Distinct Progression Rates in Alzheimer's Disease,” PLoS One, vol. 10, 2015, pp. e0142756. [CrossRef] [PubMed] [Google Scholar]
- A. Dong, J. B. Toledo, N. Honnorat, J. Doshi, E. Varol, A. Sotiras, “Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers,” Brain, vol. 140, 2016, pp. 735–747. [Google Scholar]
- J. Yun Park, H. Kyu Na, S. Kim, H. Kim, H. Jin Kim, S. Won Seo, “Robust Identification of Alzheimer's Disease subtypes based on cortical atrophy patterns,” Scientific Reports, vol. 7, pp. 43270. [Google Scholar]
- K. Persson, R. Sakshaug Eldholm, M. Lage Barca, L. Cavallin, F. Daniel, A. Brita Knapskog, “MRI-assessed atrophy subtypes in Alzheimer's disease and the cognitive reserve hypothesis,” PLoS One, vol. 12, 2017, pp. e0186595. [CrossRef] [PubMed] [Google Scholar]
- D. Ferreira, S. Shams, L. Cavallin, M. Viitanen, J. Martola, T. Granberg, “The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers,” Neurobiology of Aging, vol. 70, 2018, pp. 18–29. [CrossRef] [PubMed] [Google Scholar]
- K. Poulakis, J. B. Pereira, P. Mecocci, B. Vellas, M. Tsolaki, H. Soininen, “Heterogeneous patterns of brain atrophy in Alzheimer's disease,” Neurobiology of Aging, vol. 65, 2018, pp. 98–108. [CrossRef] [PubMed] [Google Scholar]
- M. Ten Kate, E. Dicks, P. Jelle Visser, W. M. Van Der Flier, “Atrophy subtypes in prodromal Alzheimer's disease are associated with cognitive decline,” Brain, vol. 141, 2018, pp. 3443–3456. [CrossRef] [PubMed] [Google Scholar]
- S. Emrani, H. A. Arain, C. DeMarshall, T. Nuriel, “ApoE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer's disease: a systematic review,” Alzheimer's Research and Therapy, vol. 12, 2020, pp. 141. [Google Scholar]
- H. Eavani, M. Kang Hsieh, Y. An, G. Erus, L. Beason-Held, S. Resnick, “Capturing heterogeneous group differences using mixture-of-experts: Application to a study of aging,” Neurolmage, vol. 125, 2016, pp. 498–514. [Google Scholar]
- C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompon, G. Alexander, D. Harvey, “The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods,” Journal of Magnetic Resonance Imaging, vol. 27, 2008, pp. 685–691. [Google Scholar]
- K.R. Thomas, J.S. Eppig, A.J. Weigand, E.C. Edmonds, C.G. Wong, A.J. Jak, L. Delano-Wood, D.R. Galasko, D.P. Salmon, S.D. Edland, M.W. Bondi, “Alzheimer's Disease Neuroimaging Initiative. Artificially low mild cognitive impairment to normal reversion rate in the Alzheimer's Disease Neuroimaging Initiative”. Alzheimers Dement. Vol 15(4), 2019, pp. 561–569. [CrossRef] [PubMed] [Google Scholar]
- A.W. Toga, K.L. Crawford, “The Alzheimer's Disease Neuroimaging Initiative informatics core: A decade in review”, Alzheimers Dement, vol. 11(7), 2015, pp. 832–839. [CrossRef] [PubMed] [Google Scholar]
- B. Zhang, L. Lin, S. Wu, Z.H.M. Al-Masqari, “Multiple Subtypes of Alzheimer's Disease Base on Brain Atrophy Pattern,” Brain Sciences, vol. 11(2), 2021, pp. 278. [CrossRef] [PubMed] [Google Scholar]
- S.S. Munoz, B. Garner, L. Ooi, “Understanding the Role of ApoE Fragments in Alzheimer's Disease”, Neurochem Res, vol 44(6), 2019, pp. 1297–1305. [CrossRef] [PubMed] [Google Scholar]
- Y. Yin, Z. Wang, “ApoE and Neurodegenerative Diseases in Aging”, Adv Exp Med Biol., vol 1086, 2018, pp. 77–92. [CrossRef] [PubMed] [Google Scholar]
- C. A. Hostage, K. Roy Choudhury, P. Murali Doraiswamy, J.R. Peterlla, “Dissecting the gene dose-effects of the ApoE ε4 and ε2 alleles on hippocampal volumes in aging and Alzheimer's disease,” PLoS One, vol. 8, 2013, pp. e54483. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.