Open Access
Issue
E3S Web Conf.
Volume 256, 2021
2021 International Conference on Power System and Energy Internet (PoSEI2021)
Article Number 02035
Number of page(s) 5
Section Energy Internet R&D and Smart Energy Application
DOI https://doi.org/10.1051/e3sconf/202125602035
Published online 10 May 2021
  1. Fang S, Chiang H D (2016) A high-accuracy wind power forecasting model IEEE Transactions on Power Systems, 32(2): 1589–1590. [Google Scholar]
  2. Yan J, Zhang H, Liu Y, et al. (2017) Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping. IEEE Transactions on Power Systems, 33(3): 3276–3284. [Google Scholar]
  3. Huibin L, Wenxiao Q, Qianqian Y, et al. (2016) Research on the Short-term prediction model of wind power generation based on GIS. In: 2016 China International Conference on Electricity Distribution (CICED). IEEE, 1–4. [Google Scholar]
  4. Wang Y, Liu Y, Song P, et al. (2019) Impact of the accuracy of NWP wind speed forecasts on wind power forecasting. In: 8th Renewable Power Generation Conference Shanghai China [Google Scholar]
  5. Terciyanl E, Demirci T, Küçük D, et al. (2013) Enhanced nationwide wind-electric power monitoring and forecast system. IEEE Transactions on Industrial Informatics, 10(2): 1171–1184. [Google Scholar]
  6. Zhang H, Liu Y, Yan J, et al. (2020) Improved deep mixture density network for regional wind power probabilistic forecasting. IEEE Transactions on Power Systems, 35(4): 2549–2560. [Google Scholar]
  7. Wu JL, Ji TY, Li MS, et al. (2015) Multistep wind power forecast using mean trend detector and mathematical morphology-based local predictor. IEEE Transactions on Sustainable Energy, 6(4): 1216–1223. [Google Scholar]
  8. Hong W C. (2011) Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy, 36(9): 5568–5578. [CrossRef] [Google Scholar]
  9. Hor CL, Watson SJ, Majithia S. (2016) Daily load forecasting and maximum demand estimation using ARIMA and GARCH 2006 International Conference on Probabilistic Methods Applied to Power Systems. IEEE, 2006: 1–6. [Google Scholar]
  10. Ko CN, Lee C M. (2013) Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter Energy, 49: 413–422. [Google Scholar]
  11. Dinesh Reddy M. (2017) Load forecasting using linear regression analysis in time series model for RGUKT, RK valley campus HT feeder. Int. J. Eng. Res. Technol, 6(5): 2278–0181. [Google Scholar]
  12. Amral N, Ozveren CS, King D. (2007) Short term load forecasting using multiple linear regression 2007 42nd International universities power engineering conference. IEEE, 2007: 1192–1198. [Google Scholar]
  13. M. Alamaniotis, S. Chatzidakis and L. H. Tsoukalas (2014) Monthly load forecasting using kernel based Gaussian Process Regression, MedPower 2014, Athens, pp. 1–8. [Google Scholar]
  14. L. Chong, J. Rong, D. Wenqiang, S. Weicheng and M. Xiping (2016) Short-term PV generation forecasting based on weather type clustering and improved GPR model, 2016 China International Conference on Electricity Distribution (CICED) Xi’an China, pp. 1–5. [Google Scholar]
  15. Xiao Z, Zhan S, Xiang Z, et al. (2016) A GPR-PSO incremental regression framework on GPS/INS integration for vehicle localization under urban environment 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, pp. 1–6. [Google Scholar]
  16. Cheng S, Qin Q, Chen J, et al. (2016) Brain storm optimization algorithm: a review. Artificial Intelligence Review, 46(4): 445–458. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.