Open Access
Issue
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
Article Number 01061
Number of page(s) 5
Section Energy Chemistry and Energy Storage and Save Technology
DOI https://doi.org/10.1051/e3sconf/202125701061
Published online 12 May 2021
  1. S. Formentin, P.D. Filippi, M. Corno, et al. Datadriven design of braking control systems. IEEE Transactions on Control Systems Technology, 2013, 21(1): 186-193. [Google Scholar]
  2. G. Wang, Z. Huang. Data-driven fault-tolerant control design for wind turbines with robust residual generator. Control Theory and Applications Iet, 2015, 9(7): 1173-1179. [Google Scholar]
  3. D. Xu, B. Jiang, P. Shi. A novel model-free adaptive control design for multivariable industrial processes. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391-6398. [Google Scholar]
  4. R. M. Cao, H. X. Zhou, Z. S. Hou. Data-driven model-free adaptive precision control for linear servo system. Control Theory and Applications, 2012, 29(3): 310-316. [Google Scholar]
  5. K. J. Astrom, T. Hagglund, and A. Wallenborg, Automatic Tuning of PID Controllers. Research Triangle Park, NC, USA: Instrum. Soc. Amer., 1988. [Google Scholar]
  6. J. Sivag, A. Datta, and S. P. Bhattacharyya, “New results on the synthesis of PID controllers, ” IEEE Trans. New results on the synthesis of PID controllers, ” IEEE Transutom. Control, vol. 47, no. 2, pp. 241–252, Feb. 2002. [Google Scholar]
  7. Z. S. Hou, The Parameter Identifification, Adaptive Control and Model Free Learning Adaptive Control for Nonlinear Systems. Boston, MA, USA: Northeastern Univ., 1994. [Google Scholar]
  8. Z. S. Hou and W. H. Huang, “The model-free learning adaptive control of a class of SISO nonlinear systems, ” in Proc. The model-free learning adaptive control of a class of SISO nonlinear systems, ” in ProcEEE Amer. Control Conf., Jun. 1997, pp. 343–344. [Google Scholar]
  9. G. O. Guardabassi and S. M. Savaresi, “Virtual reference direct design method: An off-line approach to data-based control system design, ” IEEE Trans. Virtual reference direct design method: An off-line approach to data-based control system design, ” IEEE Transutom. Control, vol. 45, no. 5, pp. 954–959, May 2000. [Google Scholar]
  10. M. C Campi, A. Lecchini, and S. M. Savaresi, “Virtual reference feedback tuning: A direct method for the design of feedback controllers, ” Automatica, vol. 38, no. 8, pp. 1337–1346, 2002. [Google Scholar]
  11. H. Hjalmarsson, S. Gunnarsson, and M. Gevers, “A convergent iterative restricted complexity control design scheme, ” in Proc. 33rd IEEE Conf. A convergent iterative restricted complexity control design scheme, ” in Proc. 33rd IEEE Confecision Control, Dec. 1994, pp. 1735–1740. [Google Scholar]
  12. H. Hjalmarsson, “From experiment design to closed-loop control, ” Automatica, vol. 41, no. 3, pp. 393–438, 2005. [CrossRef] [Google Scholar]
  13. J. LeDoux, Emotion and the limbic system concept, Concepts Neurosci. 2 (1991) 169–199. [Google Scholar]
  14. J.E. LeDoux, Emotion circuits in the brain, Annu. Rev. Neurosci. 23 (2000) 155–184. [Google Scholar]
  15. C.-M. Lin, C.-C. Chung, Fuzzy brain emotional learning control system design for nonlinear systems, Int. J. Fuzzy Syst. 17 (2) (2015) 119–128. [Google Scholar]
  16. J. Ayubi, A. Omidi, S.M. Barakati, P. Ayubi, Short term load forecasting based on brain emotional predictor, in: Proc. EPDC, 2015, pp. 37–41. [Google Scholar]
  17. M. Jafari, R. Fehr, L.R.G. Carrillo, H. Xu, Brain emotional learning-based intelligent tracking control for unmanned aircraft systems with uncertain system dynamics and disturbance, in: Proc. ICUAS, 2017, pp. 1470–1475. [Google Scholar]
  18. M. Jafari, S.B. Shuraki, Speed control of a digital servo system using brain emotional learning based intelligent controller, in: Proc. PEDSTC, 2013, pp. 311–314. [Google Scholar]
  19. S. Khorashadizadeh, M. Mahdian, Voltage tracking control of DC-DC boost converter using brain emotional learning, in: Proc. ICCIA, 2016, pp. 268–272. [Google Scholar]
  20. E. Lotfi, Mathematical modeling of emotional brain for classification problems, in: Proc. IAM, 2013, pp. 60–71. [Google Scholar]
  21. E. Lotfi, M.-R. Akbarzadeh-T., Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices, Neurocomputing 126 (2014) 188–196 [Google Scholar]
  22. M.A. Sharbafi, C. Lucas, R. Daneshvar, Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller, IEEE Trans. Syst. Man Cybern. C 40 (6) (2010) 630–638 [Google Scholar]
  23. C.-F. Hsu, C.-T. Su, T.-T. Lee, Chaos synchronization using brain-emotionallearningbased fuzzy control, in: Proc. SCIS, 2016, pp. 811–816. [Google Scholar]
  24. H.-S. Milad, U. Farooq, M.E. El-Hawary, M.U. Asad, Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction, IEEE Access 5 (2017) 1037–1049 [Google Scholar]
  25. Chun-Fei Hsu, Tsu-Tian Lee. Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems. International Journal of Fuzzy Systems, 19(3):942-953, 2017 [Google Scholar]
  26. Wubing Fang, Fei Chao, Chih-Min Lin, Longzhi Yang, Changjing Shang, and Changle Zhou, An Improved Fuzzy Brain Emotional Learning Model Network Controller for Humanoid Robots, Frontiers in Neurorobotics, 2019, 1-16 [Google Scholar]
  27. Jing Zhao, Chih-Min Lin, and Fei Chao. Wavelet Fuzzy Brain Emotional Learning Control System Design for MIMO Uncertain Nonlinear Systems, Frontiers in Neurorobotics, 2019, 1-11 [Google Scholar]
  28. X.J. Chen, D. Li, X.B. Yang, and H.M. Li. Radar Emitter Signals Identification with a Optimal Recurrent Type 2 Wavelet Fuzzy Neural Network, International Journal of Aeronautical Space Science, DOI 10.1007/s42405-018-0055-x. [Google Scholar]
  29. X.J. Chen, D. Li, X.B. Yang, and Y.C. Yu, Optimal Type II Fuzzy Neural Network Controller for Eightrotor MAV. International Journal of Control, Automation and Systems 15(4) :1960-1968, 2017. [Google Scholar]
  30. X.J. Chen, D. Li, X.B. Yang, and Y.C. Yu, Identification recurrent type 2 fuzzy wavelet neural network and L2-gain adaptive variable sliding mode robust control of electro-hydraulic servo system(EHSS), Asian Journal of Control, 20(5): 1–11, 2018 [Google Scholar]
  31. Chao, Fei, Zhou, Dajun, Lin, Chih-Min, Yang, Longzhi, Zhou, Changle and Shang, Changjing. Type-2 Fuzzy hybrid controller network for robotic systems, IEEE Transactions on Cybernetics, 1-15, 2019 [Google Scholar]
  32. S.L. Zhao, X.K. Wang, D.B. Zhang, and L.C. Shen, Model-Free Fuzzy Adaptive Control of the Heading Angle of Fixed-Wing Unmanned Aerial Vehicles, Journal of Aerospace Engineering, 30(4):1-10, 2018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.