Open Access
Issue
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
Article Number 03008
Number of page(s) 8
Section Environmental Monitoring Repair and Pollution Control
DOI https://doi.org/10.1051/e3sconf/202125703008
Published online 12 May 2021
  1. Saad MG, Dosoky NS, Zoromba MS, Shafik HM. Algal Biofuels: Current Status and Key Challenges. Algal Biofuels: Current Status and Key Challengesnergies 2019;12. [Google Scholar]
  2. Gilfillan D, Marland G, Boden T, Andres R. Global, Regional, and National Fossil-Fuel CO2 Emissions. Global, Regional, and National Fossil-Fuel CO2 Emissionsppalachian Energy Center; 2019. [Google Scholar]
  3. Project GC. Supplemental data of Global Carbon Budget 2020 (Version 1.0) [Data set].. Global Carbon Project; 2020. [Google Scholar]
  4. Li M, Luo N, Lu Y. Biomass Energy Technological Paradigm (BETP): Trends in This Sector. Biomass Energy Technological Paradigm (BETP): Trends in This Sectorustainability 2017; 9. [Google Scholar]
  5. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production 2018; 181:42-59. [Google Scholar]
  6. Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yieldlant Biotechnology Journal 2016; 14:1649-60. [Google Scholar]
  7. Ho DP, Huu Hao N, Guo W. A mini review on renewable sources for biofuel. A mini review on renewable sources for biofuelioresource Technology 2014; 169:742-9. [Google Scholar]
  8. Xue S-J, Chi Z, Zhang Y, Li Y-F, Liu G-L, Jiang H, et al. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Critical Reviews in Biotechnology 2018; 38:1049-60. [CrossRef] [PubMed] [Google Scholar]
  9. Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerolungal Biology 2015; 119:1194-204. [Google Scholar]
  10. Agarwal A, Rana M, Park J-H. Advancement in technologies for the depolymerization of lignin. Advancement in technologies for the depolymerization of ligninuel Processing Technology 2018; 181:115-31. [Google Scholar]
  11. Areal FJ, Riesgo L, Rodriguez-Cerezo E. Economic and agronomic impact of commercialized GM crops: a meta-analysis. Economic and agronomic impact of commercialized GM crops: a meta-analysisournal of Agricultural Science 2013; 151:7-33. [Google Scholar]
  12. Brown TR, Brown RC. A review of cellulosic biofuel commercial-scale projects in the United States. A review of cellulosic biofuel commercial-scale projects in the United Statesiofuels Bioproducts & Biorefining-Biofpr 2013;7:235-45. [Google Scholar]
  13. Andree Bpj, Diogo V, Koomen E. Efficiency of second-generation biofuel crop subsidy schemes: Spatial heterogeneity and policy design. Renewable & Sustainable Energy Reviews 2017;67:848-62. [Google Scholar]
  14. Aguilar DL, Rodriguez-Jasso RM, Zanuso E, De Rodriguez DJ, Amaya-Delgado L, Sanchez A, et al. Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresource Technology 2018;263:112-9. [CrossRef] [PubMed] [Google Scholar]
  15. Stefan L, Sammy B. Advances in the Production of High-Value Products by Microalgae. Advances in the Production of High-Value Products by Microalgaendustrial Biotechnology 2014;10. [Google Scholar]
  16. Nigam G, Singh R, Chaturvedi AK. Finite Duration Root Nyquist Pulses with Maximum In-Band Fractional Energy. Finite Duration Root Nyquist Pulses with Maximum In-Band Fractional Energyeee Communications Letters 2010;14:797-9. [Google Scholar]
  17. Lue J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Metabolic engineering of algae for fourth generation biofuels productionnergy & Environmental Science 2011;4:2451-66. [Google Scholar]
  18. Dutta K, Daverey A, Lin J-G. Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy 2014;69:114-22. [Google Scholar]
  19. Adeniyi OM, Azimov U, Burluka A. Algae biofuel: Current status and future applications. Algae biofuel: Current status and future applicationsenewable & Sustainable Energy Reviews 2018;90:316-35. [Google Scholar]
  20. Sharma S, Basu S, Shetti NP, Aminabhavi TM. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Science of the Total Environment 2020;713. [Google Scholar]
  21. Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, et al. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. Bmc Genomics 2014;15. [PubMed] [Google Scholar]
  22. Dickinson S, Mientus M, Frey D, Amini-Hajibashi A, Ozturk S, Shaikh F, et al. A review of biodiesel production from microalgae. Clean Technologies and Environmental Policy 2017;19:637-68. [Google Scholar]
  23. Chen H, Li TP, Wang Q. Ten years of algal biofuel and bioproducts: gains and pains. Ten years of algal biofuel and bioproducts: gains and painslanta 2019;249:195-219. [Google Scholar]
  24. Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, De Souza CO, et al. Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. Bioenergy Research 2013;6:1-13. [Google Scholar]
  25. Zhu J Y RJF, Zong B N. Factors in mass cultivation of microalgae for biodiesel[J]. Factors in mass cultivation of microalgae for biodiesel[J] Chinese journal of catalysis 2013;34:21. [Google Scholar]
  26. UKEssays. Growth Of Microalgae Using Led Lighting Biology Essay. 2018. [Google Scholar]
  27. Yong F ZG Xlr-nL. Energy Microbiology. 2013. [Google Scholar]
  28. Zhu SN LF, Fan JH. Research Progress and Prospect of Microalgae Bioenergy. Research Progress and Prospect of Microalgae Bioenergydvances in New and Renewable Energy 2018;6:8. [Google Scholar]
  29. Photobioreactors: production systems for phototrophic microorganisms[J]. Photobioreactors: production systems for phototrophic microorganisms[J] Applied microbiology and biotechnology 2001;57:7. [Google Scholar]
  30. Fan XL GR-B, Wei DZ. Energy Microalgae and Biorefinery. Energy Microalgae and Biorefineryhina Basic Science 2009;5:5. [Google Scholar]
  31. Azma M MM, Mohamed R, et al. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Een J 2011;53:9. [Google Scholar]
  32. Clark G J LD, Bushell M E. Oxygen Limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture Microbiology. 1995;141:7. [Google Scholar]
  33. Wu Z Y SXM. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network mode[J]. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network mode[J]etters in applied microbiology 2007;44:6. [Google Scholar]
  34. Qin L WZM, Sun Y M, et al. Microalgae consortia cultivation in daily wastewater to improve the potential of nutrient removal and biodiesel feedstock production[J]. Microalgae consortia cultivation in daily wastewater to improve the potential of nutrient removal and biodiesel feedstock production [J] Environmental science and pollution research 2016;23:9. [Google Scholar]
  35. Zhu L D TJ, Hiltunen E, et al. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production[J]. Bioresource technology 2013:7. [Google Scholar]
  36. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, et al. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020;242:125079. [CrossRef] [PubMed] [Google Scholar]
  37. Rubin EM. Genomics of cellulosic biofuels. Genomics of cellulosic biofuelsature 2008;454. [Google Scholar]
  38. Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T. Saccharification of marine microalgae using marine bacteria for ethanol production. Saccharification of marine microalgae using marine bacteria for ethanol productionpplied Biochemistry and Biotechnology 2003;105. [Google Scholar]
  39. Ojeda K, Sánchez E, El-Halwagi M, Kafarov V. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathwayshemical Engineering Journal 2011;176-177:195201. [Google Scholar]
  40. Hirayama S, Ueda R, Ogushi Y, Hirano A, Samejima Y, Hon-Nami K, et al. Ethanol production from carbon dioxide by fermentative microalgae. Studies in Surface Science and Catalysis 1998;114. [Google Scholar]
  41. Hirano A, Ueda R, Hirayama S, Ogushi Y. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. CO 2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentationnergy 1997;22. [Google Scholar]
  42. Ueda R, Hirayama S, Sugata K, Nakayama H. Process for the production of ethanol from microalgae. Process for the production of ethanol from microalgaeitsubishi Jukogyo Kabushiki Kaisha; 1996. p. 28-48-. [Google Scholar]
  43. Deng MD, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Ethanol synthesis by genetic engineering in cyanobacteriapplied and environmental microbiology 1999;65. [Google Scholar]
  44. Ramachandra TV, Hebbale D. Bioethanol from macroalgae: Prospects and challenges. Bioethanol from macroalgae: Prospects and challengesenewable and Sustainable Energy Reviews 2020;117:109479. [Google Scholar]
  45. Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, et al. Bioethanol Production from Ulva pertusa Kjellman by High-temperature Liquefaction. Chemical & Biochemical Engineering Quarterly 2012;26. [Google Scholar]
  46. Nguyen TH, Ra CH, Sunwoo IY, Jeong GT, Kim SK. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactoseioprocess and Biosystems Engineering 2017;40:529-36. [Google Scholar]
  47. Ge L, Wang P, Mou H. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Study on saccharification techniques of seaweed wastes for the transformation of ethanolenewable Energy 2011;36:84-9. [Google Scholar]
  48. Lee SJ, Oh YH, Kim DH, Kwon DY, Lee CG, Lee JW. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strainsppl Biochem Biotechnol 2011;164:87888. [Google Scholar]
  49. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwavesltrasonics Sonochemistry 2008;15. [Google Scholar]
  50. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. Comparison of several methods for effective lipid extraction from microalgae. Bioresource technology 2010;101 Suppl 1. [Google Scholar]
  51. Zeng D, Li R, Yan T, Fang T. Perspectives and advances of microalgal biodiesel production with supercritical fluid technology. Perspectives and advances of microalgal biodiesel production with supercritical fluid technologysc Advances 2014;4:39771-81. [Google Scholar]
  52. Xu R, Mi Y. Simplifying the Process of Microalgal Biodiesel Production Through In Situ Transesterification Technology. Simplifying the Process of Microalgal Biodiesel Production Through In Situ Transesterification Technologyournal of the American Oil Chemists’ Society 2011;88:91-9. [Google Scholar]
  53. Li P, Miao X, Li R, Zhong J. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysateournal of Biomedicine and Biotechnology 2011:141-207. [Google Scholar]
  54. Ramachandran R, Menon RK. An overview of industrial uses of hydrogen. An overview of industrial uses of hydrogennternational Journal of Hydrogen Energy 1998;23:593-8. [Google Scholar]
  55. Sharma A, Arya SK. Hydrogen from algal biomass: A review of production process. Hydrogen from algal biomass: A review of production processiotechnology Reports 2017;15:63-9. [Google Scholar]
  56. Nagarajan D, Chang J-S, Lee D-J. Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives. Bioresource Technology 2020;302:122871. [CrossRef] [PubMed] [Google Scholar]
  57. Stanislaus MS, Zhang N, Yuan Y, Zheng H, Zhao C, Hu X, et al. Improvement of biohydrogen production by optimization of pretreatment method and substrate to inoculum ratio from microalgal biomass and digested sludge. Renewable Energy 2018;127:670-7. [Google Scholar]
  58. Pinto T, Gouveia L, Ortigueira J, Saratale GD, Moura P. Enhancement of fermentative hydrogen production from Spirogyra sp. by increased carbohydrate accumulation and selection of the biomass pretreatment under a biorefinery model. Journal of Bioscience and Bioengineering 2018;126:226-34. [CrossRef] [PubMed] [Google Scholar]
  59. Sun C, Xia A, Liao Q, Fu Q, Huang Y, Zhu X, et al. Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios. Applied Energy 2018;230:1082-92. [Google Scholar]
  60. Wall DM, McDonagh S, Murphy JD. Cascading biomethane energy systems for sustainable green gas production in a circular economy. Bioresource Technology 2017;243:1207-15. [CrossRef] [PubMed] [Google Scholar]
  61. Ma J, Li L, Zhao Q, Yu L, Frear C. Biomethane production from whole and extracted algae biomass: long-term performance evaluation and microbial community dynamics. Biomethane production from whole and extracted algae biomass: long-term performance evaluation and microbial community dynamicsenewable Energy 2021. [Google Scholar]
  62. Wu H, Li J, Liao Q, Fu Q, Liu Z. Enhanced biohydrogen and biomethane production from Chlorella sp. Enhanced biohydrogen and biomethane production from Chlorella spith hydrothermal treatment. Energy Conversion and Management 2020;205:112373. [Google Scholar]
  63. Costa JC, Oliveira JV, Pereira MA, Alves MM, Abreu AA. Biohythane production from marine macroalgae Sargassum sp. Biohythane production from marine macroalgae Sargassum spoupling dark fermentation and anaerobic digestion. Bioresource Technology 2015;190:251-6. [Google Scholar]
  64. Shi X, Jung K-W, Kim D-H, Ahn Y-T, Shin H-S. Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed culturesnternational Journal of Hydrogen Energy 2011;36:5857-64. [Google Scholar]
  65. Abdullah B, Syed Muhammad Safa, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, et al. Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews 2019;107:37-50. [Google Scholar]
  66. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiology 2000;122. [Google Scholar]
  67. Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, et al. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresource Technology 2013;127:216-22. [PubMed] [Google Scholar]
  68. Shen Y, Zhang H, Xu X, Lin X. Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Biofilm formation and lipid accumulation of attached culture of Botryococcus brauniiioprocess and Biosystems Engineering 2015;38:481-8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.