Open Access
Issue |
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
|
|
---|---|---|
Article Number | 03027 | |
Number of page(s) | 5 | |
Section | Environmental Monitoring Repair and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202125703027 | |
Published online | 12 May 2021 |
- Lee, H., “Status and Improvement Measures for Total Air Pollution Load Management” National Assembly Research Service, 36 (2019). [Google Scholar]
- Karim, Z.A.A., Khan, M. Y., Rashid, A., Aziz, A. and Hagos, F. Y., “Attaining Simultaneous Reduction in Nox and Smoke by Using Water-in-biodiesel Emulsion Fuels For Diesel Engine” A Journal of Engineering, 3, 1-21 (2019). [Google Scholar]
- Kohzadi, N., Boyd, M. S., Kermanshahi, B., and Kaastra, I. A comparison of artificial neural network and time series models for forecasting commodity prices, Neurocomputing, 10, 169–181(1996). [Google Scholar]
- Ho, S. L., Xie, M., and Goh, T. N., A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction, Computers & Industrial Engineering, 42, 371–375(2002). [CrossRef] [Google Scholar]
- Tabachnick, J., Fidell, B. G. and Ullman, L. S., Using Multivariate Statistics, Pearson Education, London (2007). [Google Scholar]
- Meyler, A., Kenny, G. and Quinn, T., “Forecasting Irish Inflation Using ARIMA Models” Munich Personal RePEc Archive, 11359 (1998). [Google Scholar]
- Khashei, M., Bijari, M. and Raissi Ardali, G. A., “Improvement of Auto-Regressive Integrated Moving Average models using Fuzzy logic and Artificial Neural Networks (ANNs), ” Neuro-computing, 72(46), 956-967 (2009). [Google Scholar]
- Zhang, G., Patuwo, B. E. and Hu, M. Y., “Forecasting with Artificial Neural Networks-the State of Art, ” Int. Forecasting with Artificial Neural Networks-the State of Art, ” Int. Forecast., 14(1), 35-62 (1998) [Google Scholar]
- Jcm Pires, Fg Martins, Siv Sousa, Mcm Alvim-Ferraz and Mc Pereira, “Prediction of the Daily Mean PM10 Concentrations Using Linear Models”, American Journal of Environmental Sciences 4 (5): 445-453(2008). [Google Scholar]
- Yin Zhao, Yahya Abu Hasan, “Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central”, Computational Ecology and Software, 3(3): 6173(2013). [Google Scholar]
- Hochreiter, S., Schmidhuber, J., Long short-term memory, Neural Computation, 9, 1735–1780(1997). [Google Scholar]
- Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L. and Cheng, Z., “Time-series Well Performance Prediction Based on Long Short-Term Memory (LSTM) Neural Network Model” J. Time-series Well Performance Prediction Based on Long Short-Term Memory (LSTM) Neural Network Model” Jetrol. Sci. Eng., 186, 106682 (2020). [Google Scholar]
- Li, Y. and Cao, H., “Prediction for Tourism Flow based on LSTM Neural Network” Procedia Comput. Prediction for Tourism Flow based on LSTM Neural Network” Procedia Computci., 129, 277-283 (2018). [Google Scholar]
- Karakoyun, E. Ş. and Çıbıkdiken, A. O., “Comparison of ARIMA Time Series Model and LSTM Deep Learning Algorithm for Bitcoin Price Forecasting” Proceedings of the Multidisciplinary Academic Conference, 171-179 (2018). [Google Scholar]
- K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J. Schmidhuber, “LSTM: a search space odyssey” IEEE Trans. LSTM: a search space odyssey” IEEE Transeural Networks and Learning Systems, vol. 28, no. 10, pp.2222-2232 (2017). [Google Scholar]
- H. Salehinejad, S. Sankar, J. Barfett, E. Colak and S. Valaee, “Recent advances in recurrent neural networks” online: arXiv preprint arXiv: 1801.01078 (2018). [Google Scholar]
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks, ” in Proc. Imagenet classification with deep convolutional neural networks, ” in Procf the 25th International Conference on Neural Information Processing Systems, Nevada, U.S.A., pp. 1097-1105(2012). [Google Scholar]
- P. Sibi, S. A. Jones and P. Siddarth, “Analysis of different a activation function using back propagation neural networks” Journal of Theoretical and Applied Information Technology (JATIT), vol. 47, no. 3, pp. 1264-1268(2013). [Google Scholar]
- Z. Wang, “Mean squared error: love it or leave it? a new look at signal fidelity Measures, ” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98-117(2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.