Open Access
Issue
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
Article Number 03032
Number of page(s) 7
Section Environmental Monitoring Repair and Pollution Control
DOI https://doi.org/10.1051/e3sconf/202125703032
Published online 12 May 2021
  1. World Bank. 2018. Poverty and Shared Poserity 2018: Piecing Together the Poverty Puzzle. Washington, DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO [Google Scholar]
  2. United Nations, “A World That Counts: Mobilising the Data Revolution for Sustainable Development” (2014) [Google Scholar]
  3. United Nations. The Sustainable Development Goals Report 2020. [Google Scholar]
  4. M. Jerven, “Benefits and costs of the data for development targets for the Post-2015 Development Agenda, ” Data for Development Assessment Paper Working Paper, September (Copenhagen Consensus Center, Copenhagen, 2014). [Google Scholar]
  5. Blumenstock, J., et al. “Predicting Poverty and Wealth from Mobile Phone Metadata.” Science, vol. 350, no. 6264, 2015, pp. 1073–1076., doi:10.1126/science.aac4420. [CrossRef] [PubMed] [Google Scholar]
  6. Jean, N., et al. “Combining Satellite Imagery and Machine Learning to Predict Pov-erty.” Science, vol. 353, no. 6301, 2016, pp. 790–794., doi:10.1126/science.aaf7894. [Google Scholar]
  7. Xie, Michael. “Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping.” Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), 2016 [Google Scholar]
  8. Ayush, Kumar, et al. “Generating Interpretable Poverty Maps Using Object Detection in Satellite Images.” Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020, doi:10.24963/ijcai.2020/608. [Google Scholar]
  9. Uzkent, Burak, et al. “Learning to Interpret Satellite Images Using Wikipedia.” Pro-ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019, doi:10.24963/ijcai.2019/502. [Google Scholar]
  10. Cicceri, Giovanni, et al. “A Machine Learning Approach to Forecast Economic Reces-sions—An Italian Case Study.” Mathematics, vol. 8, no. 2, 2020, p. 241., doi:10.3390/math8020241. [Google Scholar]
  11. Storm, Hugo, et al. “Machine Learning in Agricultural and Applied Economics.” Eu-ropean Review of Agricultural Economics, vol. 47, no. 3, 2019, pp. 849–892., doi:10.1093/erae/jbz033. [Google Scholar]
  12. Sahn, David E., and David Stifel. “Exploring Alternative Measures of Welfare in the Absence of Expenditure Data.” Review of Income and Wealth, vol. 49, no. 4, 2003, pp. 463–489., doi:10.1111/j.0034-6586.2003.00100.x. [Google Scholar]
  13. Goldberger, Arthur S. (1964). “Classical Linear Regression”. Classical Linear Regression”conometric Theory. New York: John Wiley & Sons. pp. 158. ISBN 0-471-31101-4. [Google Scholar]
  14. Santosa, Fadil; Symes, William W. (1986). “Linear inversion of band-limited reflec-tion seismograms”. Linear inversion of band-limited reflec-tion seismograms”IAM Journal on Scientific and Statistical Computing. SIAM. 7 (4): 1307–1330. doi:10.1137/0907087. [Google Scholar]
  15. Gruber, Marvin (1998). Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators. Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimatorsoca Raton: CRC Press. pp. 7–15. ISBN 0-8247-0156-9 [Google Scholar]
  16. Zou, Hui; Hastie, Trevor (2005). “Regularization and Variable Selection via the Elas-tic Net”. Regularization and Variable Selection via the Elas-tic Net”ournal of the Royal Statistical Society, Series B. 67 (2): 301–320. CiteSe-erX 10.1.1.124.4696. doi:10.1111/j.14679868.2005.00503.x [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.